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Materials and Methods 
Animals 

Wild type (CD-1) and transgenic mice (5HT3EGFP on a CD-1 background) 
between postnatal 21 and 31 days of both sexes were used. In the transgenic mouse 
line EGFP is expressed under the control of the Htr3a promoter (GENSAT project, 
Rockefeller University, NY). All experimental procedures performed followed the 
guidelines and recommendations of local animal protection legislation and were 
approved by the local committee for ethical experiments on laboratory animals 
(Stockholms Norra Djurförsöksetiska nämnd, Sweden) 
 
Tissue dissociation 

Somatosensory cortex (Bregma, AP: 1.54 to -1.82 mm), or CA1 hippocampal 
(Bregma, AP: -2.06 to -3.80 mm) brain regions (Fig. S11) were dissociated into a 
single cell suspension. Mice were deeply anesthetized with a mixture of 
ketamine/xylazine (80mg/kg; 10mg/kg), and the brain was quickly dissected and 
transferred to ice-cold oxygenated cutting solution (87 mM NaCl, 2.5 mM KCl, 1.25 
mM NaH2PO4, 26 mM NaHCO3, 75 mM sucrose, 20 mM glucose, 1 mM CaCl2, and 
2 mM MgSO4) and kept in the same solution during sectioning on a vibratome 
(VT1200 S, Leica) in 300 µm thick slices. The area of interest was dissected from 
each slice, and the tissue was dissociated using the Papain dissociation system 
(Worthington) following the manufacturer’s instructions. All the solutions were 
oxygenated for at least 10 minutes with a mixture of 5% CO2 in O2 (Labline). 
Oxygenation and a short time of dissection were crucial to keep a high rate of survival 
in the cell suspension. After this, the cell suspension obtained was filtered with 20 µm 
filter (Partec) and kept in cold HBSS solution (SIGMA) with 0.2% BSA and 0.3% 
glucose. Then the cells were immediately loaded in the C1 chip, or FACS sorted and 
then loaded in the chip. 
 
FACS sorting 

After dissociation of the somatosensory cortex in the 5HT3aEGFP mouse, the 
EGFP+ cells were FACS sorted using a BD FACSAria" III Cell Sorter B5/R3/V3 
system. In the cortex of this transgenic line all the EGFP labeled cells are GABAergic 
interneurons derived from the caudal ganglionic eminence (27). A total of 91 (passed-
QC) FACS sorted cortical interneurons were obtained in this way.  
 
Cell capture and imaging 

A cell suspension of either somatosensory S1 cortex or CA1 hippocampus with 
600-1000 cells/µL was used. C1 Suspension Reagent was added (all 'C1' reagents 
were from Fluidigm, Inc.) in a ratio of 4 µL to every 7 µL cell suspension. 11 µL of 
the cell suspension mix was loaded on a C1 Single-Cell AutoPrep IFC microfluidic 
chip designed for 10- to 17-µm cells, and the chip was then processed on a Fluidigm 
C1 instrument using the 'mRNA Seq: Cell Load (1772x/1773x)' script (30 min at 4°C). 
The plate was then transferred to an automated microscope (Nikon TE2000E), and a 
brightfield and EGFP fluorescence image (20× magnification) was acquired for each 
capture site using µManager (http://micro-manager.org/  (28)), which took <15 min. 

 
Lysis, reverse transcription and PCR 

The plate was returned to the lab where Lysis mix, RT mix and PCR mix 
(previously described (11)) were added to the chip. The plate was then placed in the 



 
 

3 
 

Fluidigm C1 instrument and the 'mRNA Seq: RT + Amp (1772x/1773x)' script was 
executed, which took ~8.5 h and included lysis, reverse transcription and 21 cycles of 
PCR. When the run had finished, the amplified cDNA was harvested in a total of 13 
µL C1 Harvesting Reagent and the quality of cDNA was assessed on an Agilent 
BioAnalyzer. The typical yield was 1 ng/µL. 

 
Quality control and selection 

After each capture experiment, the individual cell images were used to determine 
cell diameter by an automated image analysis algorithm in MATLAB. Manual 
inspection of each capture site was used to identify empty chambers, unhealthy cells 
or chambers with more than a single-cell. Only chambers containing a single healthy-
looking cell were further processed. In preliminary experiments, we had confirmed 
that cells judged unhealthy rarely yielded useable cDNA. 

 
Tagmentation and isolation of 5' fragments 

Amplified cDNA was simultaneously fragmented and barcoded by tagmentation, 
i.e. using Tn5 DNA transposase to transfer adaptors to the target DNA as previously 
described (11). 100 µl Dynabeads MyOne Streptavidin C1 beads (Invitrogen) were 
washed in 2× BWT (10 mM Tris-HCl, pH 7.5, 1 mM EDTA, 2 M NaCl, 0.02% 
Tween-20) then resuspended in 2 ml 2× BWT. Twenty microliters of beads were 
added to each well and incubated at room temperature for 15 min. All fractions were 
pooled, the beads were immobilized and the supernatant removed (thus removing all 
internal fragments and retaining only the 5′- and 3′-most fragments). The beads were 
then resuspended in 100 µL TNT (20 mM Tris, pH 7.5, 50 mM NaCl, 0.02% Tween), 
washed in 100 µL Qiagen Qiaquick PB, then washed twice in 100 µL TNT. The beads 
were then resuspended in 100 µL restriction mix (1× NEB CutSmart, 0.4 U/µL PvuI-
HF enzyme), designed to cleave 3′ fragments carrying the PvuI recognition site. The 
mix was incubated for 1 h at 37 °C, then washed three times in TNT. Finally, to elute 
DNA, beads were resuspend in 30 µL ddH2O and incubated 10 minutes at 70°C. 
Beads were then immediately bound to magnet and the supernatant was collected. To 
remove short fragments,  Ampure beads (Beckman Coulter) were used at 1.8× volume 
and eluted in 30 µL. 

 
Illumina high-throughput sequencing 

The library molar concentration was quantified by qPCR using KAPA Library 
Quant (Kapa Biosystems) and library fragment length was estimated using 
Bioanalyzer of a reamplified (12 cycles) library. Sequencing was performed on an 
Illumina HiSeq 2000 instrument using C1-P1-PCR-2 as the read 1 primer, and C1-
TN5-U as the index read primer (11). Reads of 50 bp were generated along with 8 bp 
index reads corresponding to the cell-specific barcode. Each read was expected to 
start with a 6 bp unique molecular identifier (UMI), followed by 3-5 guanines, 
followed by the 5’ end of the transcript. 

 
Processing sequencing reads to molecule counts 

Read processing was performed as described (11), except that we removed any 
RNA molecule (i.e. UMI) supported only by a single read. This considerably reduced 
the number of true molecules detected (we estimate that as many as 30% of all 
molecules were detected as singletons), but also removed a large number of likely 
‘ghost’ molecules. Such artefacts can arise by sequencing error, PCR-induced 
mutations or translocations and cross-contamination.  
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To estimate cross-contamination, we exploited the fact that choroid plexus 
epithelial cells are rare, but express Ttr at exceptionally high levels. In ten plates that 
did not contain a choroid plexus cell, we observed zero Ttr reads in every well. In 
contrast, in a plate with a single choroid plexus epithelial cell, we found 546,996 
reads mapped to Ttr in the correct well, and an average of 25 reads per well in the 
other wells. The estimated cross-contamination rate was thus 0.0045%. There may be 
several reasons for this cross-contamination. For example, actual leakage between 
channels in the C1 chip, leakage of RNA from choroid plexus cells in solution prior to 
single-cell isolation, or cross-contamination during sample preparation.  

 
Single-molecule fluorescence RNA in situ hybridization (smFISH) 

Postnatal day 21 wild type CD1 or 5HTR3-GFP mice were perfused with 4% 
cold PFA. The brains were then collected, embedded in Tissue-Tek OCT (Sakura, 
Alphen aan den Rijn, The Netherlands), frozen on dry ice and stored at -80°C until 
used.  

smFISH was carried out as previously described (29) with minor modifications. 
The tissue sections were permeabilized using PBS-TritonX 0.5% for 1 hour at room 
temperature followed by 24 hours of hybridization with 250 nM fluorescent label 
probes (Biosearchtech, Petaluma, CA, USA; Table S2) at 37°C and counterstained 
with DAPI (Life Technologies). The sections were mounted with pro-long gold (Life 
Technologies) and image stacks (0.3 µm distance) were acquired using a customized 
automated scanning microscope controlled by µManager (28). Images were analyzed 
in Matlab (Mathworks, Natick, MA, USA) using a custom script. After blind 
deconvolution the cell nuclei were isolated by marker-controlled segmentation of the 
DAPI signal. A Laplacian-of-Gaussian followed by a Wiener filter were used to 
reduce the smFISH background and to enhance the RNA dots that were then 
identified by computing the extended maxima transform of the flattened image (30). 
Each mRNA dot was assigned to the closest nucleus if the distance between the 
mRNA and nucleus centroids was below or equal twice the geometric average of the 
major and minor axis of the closest nucleus mask. 
Electrophysiological recordings and immunohistochemistry 

Whole-cell patch-clamp electrophysiological recordings and 
immunohistochemistry was performed as described in (31). For electrophysiological 
recordings we targeted layer 1 cells in acute brain slices prepared from P18 wildtype 
mice. Biocytin was included in the recording pipette and the recorded neurons were 
stained using Alexa555-streptavidin and rabbit anti Pax6 (1:500; Millipore) in 
combination with secondary antibody goat anti rabbit Alexa488 (1:1000; Invitrogen) 
to reveal morphology and Pax6 expression. Immunohistochemistry was performed on 
neocortex from p21-p28 5HT3aEGFP mice and antibodies used were: chicken anti-
EGFP (1:2000; Abcam), rabbit anti-PAX6 (1:500, Millipore) and Aldolase C (1:100 
Santa Cruz). Secondary antibodies conjugated with Alexa Fluor dyes 488, 594 and 
647 (1:1000; Invitrogen) were used to visualize the signals. Images were acquired on 
Lsm720 or Lsm760 confocal microscopes (Zeiss). 

  
 

Supplementary Text 
Data analysis and clustering (level 1) 

Molecule counts data from all sequencing runs were merged into one single 
database which included metadata (such as age, sex, diameter etc.) about each cell. 



 
 

5 
 

Cells were selected to be valid for analysis if they passed manual inspection of images 
(described above) and had more than 2500 total detected RNA molecules (excluding 
repeats RNA and mitochondrial RNA). This resulted in 3315 valid cells. To select 
genes for clustering we used the following filters:  

 
1. Remove all genes that have less than 25 molecules in total over all cells 

(resulted in 15310 genes) 
2. Calculate the correlation matrix over the genes and define a threshold as 

90th percentile of this matrix (ρ = 0.2091). Remove genes which have less 
than 5 other genes which correlate more than this threshold (resulted in 
12114 genes) 

3. For the remaining genes calculate for each gene the mean and coefficient 
of variation (CV; standard deviation divided by the mean). We fit a 
simple noise model as log2(CV ) = log2(mean

α + k) , where the best fit 
was found to be α = -0.55, k = 0.64 see Figure S2J  Next we ranked all 
genes by their distance from the fit line and select the top 5000 genes as 
informative for further clustering 

 
Next, we developed BackSPIN, an iterative and automated version of the SPIN 

algorithm (32) as a two-way unsupervised clustering approach (33). The algorithm is 
described in detail below. About 310 cells were excluded from further analysis as 
they clustered separately from everything else and did not express any distinct 
markers. Based on their expression profiles, these cells were probably neurons of low 
quality. When applying the BackSPIN method to the remaining 3005 cells, the 
algorithm identified 77 groups, stopping after 12 splits along the deepest branch. For 
initial analysis, we limited each branch to 5 splits, where we merged the neuronal 
groups into three main groups (each containing four subgroups) and oligodendrocytes 
into one group (containing 3 subgroups). This resulted in the nine main cell classes 
shown in Figure 1B.  

The nine major clusters were visualized using t-Stochastic Neighbor Embedding 
(tSNE), using the Barnes-Hut algorithm and implementation 
(http://homepage.tudelft.nl/19j49/t-SNE.html). Each  cluster was interpreted using 
known markers. For example, interneurons were identified based on their shared 
expression of Gad1, Gad2 (the glutamic acid decarboxylases), Slc32a1 (previously 
known as Vgat; the vesicular GABA transporter) and Slc6a1 (previously known as 
Gat1; the transmembrane GABA transporter responsible for removing GABA from 
the synaptic cleft). 

 
Subclass analysis (level 2) 

To further analyze each of the nine main groups we started again with all genes 
and made a statistical t-test comparing the expression of each gene between any two 
possible groups. Each gene was assigned to the group with the lowest value of the 
maximum p value. Having the relevant genes for each group is important to achieve 
optimal clustering within groups. Thus the aim of the t test was not to discover genes 
that were highly specific to e.g. interneurons, but to exclude genes that were likely to 
be more specific to other groups. This was particularly important for the vascular 
cells, where we found that a subset of endothelial cells carried a pericyte signature, 
and vice versa. We interpreted this as incomplete cell dissociation, e.g. that some 
endothelial cells had part of a pericyte stuck onto it. If pericyte-specific genes were 
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included when clustering endothelial cells, this would create artefactual subtypes of 
endothelial cells.  

These gene exclusions were only used during clustering. Once clustering had 
been achieved, we used a full Bayesian regression model to determine each gene’s 
expression pattern across all subclasses (see below). While in principle it would have 
been desirable to use the regression model – with its more realistic noise model – 
during clustering, in practice this was not computationally feasible. Our Bayesian 
regression model was computed by numerical Monte Carlo sampling, and it took 
about 48 hours to run a single regression for every gene, on all 32 cores of a high-end 
server.  

Since the three neuronal groups shared many relevant genes, we merged the 
genes assigned to interneurons, S1 pyramidal and CA1 pyramidal neurons. Next, each 
one of the nine groups and its set of relevant genes were subjected to the BackSPIN 
algorithm with manually defined number of splits (according to group variability).  

 
BackSPIN algorithm 

The BackSPIN algorithm is based on the SPIN algorithm (32) – which 
essentially sorts the expression matrix by cell-cell or gene-gene similarity. In contrast 
to the SPIN algorithm which does not identify clusters, here the aim was to identify 
groups of cells/genes in an unsupervised manner. SPIN is a powerful method to sort a 
distance/correlation matrix without reducing dimensionality, and it converges to a 1D 
order of the features.  

Step 1 – sort the expression matrix. We used SPIN to sort the expression 
matrix by both cells and genes (Fig. S3), running the algorithm several iterations 
(~10) for each width parameter, starting with a width of 40% of the matrix dimension 
and slowly going down to 1. The width parameter controls the normal distribution 
used for the weight matrix in the SPIN algorithm. This process resulted in a two-way 
sorted matrix.  

Step 2 – split the matrix. A splitting step over the cell dimension comprises: 
  
1. Find the best splitting point over the correlation matrix, where R is the 

correlation matrix and N is the matrix dimension.  
 

Sleft =
Rj,h

j,h=1

Isplit

∑

(Isplit )
2

Rj,h
j,h=1

N

∑

N 2       Eq. 1 

 

Sright =
Rj,h

j,h=1+Isplit

N

∑

(N − Isplit )
2

Rj,h
j,h=1

N

∑

N 2       Eq. 2 

 

∀i =1,2,3...N
Rj,h

j,h=1

i

∑ + Rj,h
j,h=i+1

N

∑

i2 + (N − i)2
, split = argmaxi S(i)   Eq. 3 

 
2. If max(Sleft, Sright) > 1.15, use the splitting point to break data to left and right 

groups, otherwise do not split. 
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3. Assign genes to each group by calculating the average expression in each 
group and assign each gene to the group with the highest expression. 

 
Step 3 – recursion on each sub-matrix. The two halves (right/left) of the 

matrix are resorted and resplit separately, by restarting at Step 1 but including only 
the genes and cells assigned to each half. 

The algorithm gets as input the full matrix after sorting (1D order) and the max 
number of split cycles allowed. For every cycle, the number of groups may increase 
up to two-fold. To avoid splitting in case that the data is very homogenous the 
algorithm has a stopping condition (step 2). The output of the algorithm is the updated 
order of cells/genes and the group assignment in each splitting step for each gene/cell. 
Because genes are always assigned to either right or left halves, both genes and cells 
are clustered simultaneously. This works well up to the point where genes are truly 
expressed in multiple subsets of cells, which cannot be consistently split.  

 
Validation of cluster robustness  

Applying BackSPIN for S1 pyramidal cells class resulted in 13 clusters after 
allowing maximum 4 splits as shown in Figure S5A. To test the stability of clusters 
generated by BackSPIN we used a resampling approach.  The idea is to test the 
stability of the clusters by eliminating part of the data and running the clustering 
algorithm again. This approach is free from the assumptions required when testing 
robustness using artificial noise or creating synthetic data (34) . Resampling was 
performed as follows: 

 
1. Select at random 80% of the cells. 
2. Run BackSPIN with 4 splits using the same set of genes as in FigS5A. 
3. For every one of the original clusters (1-13) count the fraction of cells 

that stay together in the largest corresponding cluster in the resampled 
data. 

4. Repeat steps 1-3. 
5. As a negative control (null model) perform the same analysis on a 

random permutation of the original cluster order (which controls for 
differences in clusters size). 

 
The results of 100 resampling realizations (Fig. S4F) confirmed the stability of 

the clusters, i.e. that the same cells consistently tended to form the same clusters even 
when leaving out a random 20% of the cells.  
 
Comparison with hierarchical clustering 

We applied standard hierarchical clustering (Mathematica version 10; Wolfram 
Research Inc.) to the log-transformed raw data with correlation distance and Ward’s 
linkage. The result was similar to BackSPIN on the 9 major classes (Fig. S4A) 
although some oligodendrocytes were erroneously lumped together with S1 pyramidal 
cells. On the lower levels, clusters tended to be more fragmented. For example, within 
S1 pyramidal cells, several clusters were in near-perfect agreement with BackSPIN, 
while others were diffuse, even though BackSPIN clustering was well supported by in 
situ hybridization (Fig. S4B).  

We determined that one reason for the fragmentation was the fact that standard 
clustering methods are based on a global cell-cell distance measure, which is 
computed from all genes. However, when clustering, say, oligodendrocytes, most 
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genes are enriched elsewhere. They are thus not informative, and contribute at best 
only noise. For example, consider Rasgrf2 (Fig. S4C). This gene is a strong layer 2-3 
marker in S1 pyramidal cells, but was also detected in interneurons, and in a 
seemingly random subset of oligodendrocytes and other cell types. Thus this gene will 
tend to align some oligodendrocytes with layer 2-3 neurons, even though this conflicts 
with oligodendrocyte-specific genes such as Mog. Since there are thousands of genes 
that are more highly expressed outside oligodendrocytes than within them, this 
contributes a kind of ‘centrifugal force’ drawing these cells out of their proper 
placement. 

Biclustering solves this problem because at each level, genes enriched outside of 
the cells under consideration are excluded. So, for example, Rasgrf2 would be 
excluded when clustering oligodendrocytes because it is enriched in neurons, and 
conversely, Mog would be excluded when clustering neurons. 
 
Comparison with affinity propagation 

Another recently developed clustering algorithm, which performs well on a 
variety of datasets, is affinity propagation (35). This algorithm has the advantage that 
the exact number of clusters does not need to be predefined (in contrast to K-means 
clustering). It achieves clustering by an iterative procedure that gradually identifies 
exemplars to which other nodes (cells in this case) are assigned. 

On level 1, corresponding to Fig. S3, affinity propagation found ten clusters in 
total (Fig. S4D; using damping = 0.95 and preference = -14). It found two clusters of 
S1 pyramidal cells, two of mainly CA1 pyramidals and two of oligodendrocytes. 
However, it lumped together mural, endothelial and interneurons in two clusters, 
microglia, oligodendrocytes and interneurons in one cluster, and ependymal cells with 
astrocytes.  

Applying affinity propagation to S1 Pyramidal cells (Fig. S4E), in contrast, 
resulted in near-perfect agreement with BackSPIN (and with validation by in situ 
hybridization). 
 
Residual variance and merging of clusters 

We used a heuristic stopping rule (described above). To determine if there was 
residual variance in the final subclasses – which would suggest that they could be 
further split – we performed the following test. We computed the variance explained 
by each principal component (i.e. the eigenvalues of the standardized correlation 
matrix). We then used the ‘broken stick’ criterion (36) to determine if the first several 
principal components explained more variance than expected by chance. Each of the 9 
major classes had several significant principal components. In contrast, 46 of the 47 
subclasses had only a single significant principal component (exception: Oligo6, 
which had two). Although this shows that in principle, it may be possible to further 
split some of the clusters, we have preferred to be conservative when calling cell 
classes. For clarity, we show all the raw clusters in supplementary figures (black 
rectangles in Figs. S6, S8, S9 and S10), where we have also indicated how some 
clusters were merged.  

In brief: we merged two clusters to form S1PyrL23 (layer II/III pyramidal 
neurons; Fig. S6A), although a few genes such as Bdnf, Penk and Inhba suggested 
possible subtypes. Two clusters were merged to form S1PyrDL (deep-layer pyramidal 
neurons; Fig. S6A). CA1 type 1 and type 2 neurons (CA1Pyr1 and CA1Pyr2) were 
merged from three and two clusters, respectively. As noted in the main text, 
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hippocampal pyramidal neurons varied along at least two dimensions, with genes 
such as Dcn and Grp suggesting subgroups within both type 1 and type 2 neurons.  

Similarly, we report a single Oligo5 subclass from two clusters (possibly 
representing sub-stages of oligodendrocyte differentiation: Fig S9B). For astrocytes, 
we report two subclasses, Astro1 and Astro2 from four clusters (Fig. S10A). These 
were confirmed by immunohistochemistry (Fig. 3B), and we suspect that the further 
splits represent intermediate forms also indicated by the immunostaining. For 
example, Gfap and Mfge8 stained distinct populations residing in the superficial glia 
limitans and in the parenchyme, respectively, but there were cells in the vicinity of the 
surface that were apparently positive for both markers.  

Finally, in the case of mural end endothelial cells, we merged two clusters to 
form a single vascular smooth muscle subclass (Vsmc; Fig. S10B) and three clusters 
forming type 2 endothelial cells (Vend2). In these cases, specifically, we wanted to 
avoid the risk of over-splitting due to cross-contamination, as mural cells and 
endothelial cells both reside under the basement membrane and we were not confident 
that we could always physically separate them. Any contamination of endothelial 
cells by (fragments of) pericytes, for example, would potentially show up as an 
artefactual endothelial subtype. 
 
Negative binomial generalized linear regression 

Clustering by BackSPIN was used to discover classes and subclasses of cells. 
However, BackSPIN always assigns each gene to a single cluster, when in reality 
genes may be expressed in many cell types, and may have any combination of cell 
type-specific, basal, sex-specific or age-regulated expression patterns. To rigorously 
assign expression to defined classes of cells, we therefore developed a Bayesian 
generalized linear regression model (GLM), using a negative binomial noise model. 

In a regression model, the outcomes (i.e. the measured molecule counts in 
individual cells) are viewed as being sampled from some distribution whose mean is 
given by a linear combination of predictors. A predictor can be a scalar (e.g. cell size) 
or a 0/1 indicator (e.g. ‘this cell belongs to the class of microglia’). With K predictors 
xi there will be K coefficients βi. For each cell, the outcome and predictors are known, 
and we wish to determine the values of the coefficients. 

Note that since molecule counts are always non-negative, we constrain the 
coefficients and the predictors to also be non-negative. This gives a straightforward 
interpretation to the coefficients; they represent the additional number of molecules 
expressed when xi = 1.  

We model the following predictors: 
 

Variable Type Implementation 

Sex Categorical xmale, xfemale 

Cell type Categorical xS1PyrL23, xMgl, xAstro2, … 

Age Categorical xyoung, xold 

Basal Scalar xbasal 
 

The Basal predictor is meant to capture constitutive expression, also known as 
housekeeping genes. We regarded each gene as having a basal expression 
proportional to the total transcriptome size, on top of which is added molecules due to 
the age, type and sex of the cell. The Basal variable is set proportional to the total 
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molecule count of the cell, normalized to the mean count in all cells. Hence, a neuron 
twice as large as the average cell will have twice the basal expression.  

We set up a regression model that explains the inferred expression level µ as a 
linear combination of the predictors. We introduce coefficients βk, one for each 
explanatory variable (thus k ∈ [1,K ] ); they tell us about the effect, if any, of the 
various predictors on the gene expression level. For a binary explanatory variable xk, 
its coefficient βk is the number of additional molecules that are expressed in cells for 
which xk = 1. Therefore, 

 

µ = βk xk
k=1

K

∑         Eq. 4 

 
 

Note that there is no constant (intercept); instead basal expression is assumed to 
be proportional to cell size (total molecule count) and is modeled by its own 
explanatory variable.  

Next, we note that real count data is typically overdispersed compared to an 
ideal Poisson distribution. To model this additional source of variation, we use the 
negative binomial distribution, which can be equivalently viewed as a gamma mixture 
of Poisson distributions. That is, if y is the observed count, the model is: 

 
y | λ ~ Poisson(λ)        Eq. 5 

 
λ | a,b ~Gamma(a,b)       Eq. 6 

 
The mean and standard deviation are then 
 
µ = ab          Eq. 7 

 

σ =
ab
1+ b

1+ b( )        Eq. 8 

 
However, we also need to take into account the way in which the overdispersion 

scales with the mean. For example, the naïve approach of simply modelling noise 
using an extra predictor for the standard deviation fails, as it essentially amounts to 
saying that the standard deviation is the same at all levels of expression (which is very 
far from true, see Fig. S1J). 

Instead, we make use of the fact that the observed standard deviations scale 
roughly as the square root of the mean, with a constant offset (Fig. S2J). We introduce 
an overdispersion factor r, defined by 

 
σ = r µ         Eq. 9 

 
and hence 

 

a = µ
r2 −1         Eq. 10 
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b = r2 −1        Eq. 11 

 
 

To make a full Bayesian model, we attach prior distributions to the coefficients 
as well as the overdispersion factor. For βk, we used a Pareto distribution y ~ 
Pareto(0, 1.5), which was a good fit to the actual distribution of gene expression over 
all genes (not shown)1.  

For r, we use a Cauchy distribution, leading to the complete Bayesian negative 
binomial regression model (next page). 

 
 

  

                                                
1 When implementing this model, we actually used Pareto(1, 1.5) which shifts the coefficiencts by 1.0. 
We then subtract 1.0 when calculating the mean. This is necessary because the Pareto distribution is 
undefined at zero. We also add a small constant (0.001) to the mean to avoid numerical instability 
when the mean is very close to zero. 
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The complete regression model 
 

µ = βk xk
k=1

K

∑      (Eq. 4 repeated for clarity) 

 
y | λ ~ Poisson(λ)     (Eq. 5 repeated for clarity) 

 

λ |µ, r ~Gamma µ
r2 −1

, r2 −1
"

#
$

%

&
'      Eq. 12 

 
r ~ Cauchy(0,1)        Eq. 13 

 
βk ~ Pareto(0,1.5)        Eq. 14 

 
 
The model was implemented in Stan (http://mc-‐stan.org): 
 

data	  {	  
	   int<lower=0>	  N;	   	   	   	   #	  number	  of	  outcomes	  
	   int<lower=0>	  K;	   	   	   	   #	  number	  of	  predictors	  
	   matrix<lower=0>[N,K]	  x;	   #	  predictor	  matrix	  	  
	   int	  y[N];	   	   	   	   	   	   #	  outcomes	  
}	  
	  
parameters	  {	  
	   vector<lower=1>[K]	  beta;	   #	  coefficients	  
	   real<lower=0.001>	  r;	  	   	   #	  overdispersion	  
}	  
	  
model	  {	   	  
	   vector<lower=0.001>[N]	  mu;	  
	   vector<lower=1.001>[N]	  rv;	  
	  
	   #	  priors	  
	   r	  ~	  cauchy(0,	  1);	  
	   beta	  ~	  pareto(1,	  1.5);	  
	  
	   #	  vectorize	  the	  overdispersion	  
	   for	  (n	  in	  1:N)	  {	  
	   	   rv[n]	  <-‐	  square(r	  +	  1)	  -‐	  1;	  
	   }	  
	  
	   #	  regression	  
	   mu	  <-‐	  x	  *	  (beta	  -‐	  1)	  +	  0.001;	  
	   y	  ~	  neg_binomial(mu	  ./	  rv,	  1	  /	  rv[1]);	  
}	  
	  
	  
 
Gene expression enrichment analysis 

We used negative binomial generalized linear regression (previous section) to 
obtain posterior probability distributions for the subclass-specific (as well as basal and 
sex-specific) contributions to each gene’s expression. In order to find genes expressed 



 
 

13 
 

preferentially in a particular subclass (or set of subclasses), we compared these 
posterior probability distributions in two different ways, as follows. 

For transcription factors (Fig. 4A), we used a procedure designed to find all-or-
none expression patterns. Given a test set (i.e. a set of named subclasses, such as the 
two astrocyte subclasses), we defined a control set by taking interneurons, S1 
Pyramidal cells, CA1 pyramidal cells, oligodendrocytes, microglia, astrocytes, 
ependymal cells, mural cells and vascular endothelial cells, removing from the control 
set any subclass included in the test set. We then calculated the posterior probability 
that expression in the test set was greater than the expression in each member of the 
control set (using the numerical samples obtained by Markov chain Monte Carlo). 

We systematically analyzed enrichment in every subtree of the hirearchical 
clustering (Fig. 1), using a cutoff of 90% posterior probability, leading to a false 
discovery rate <5%. When a gene was enriched on several nested subtrees, we 
assigned it to the largest subtree. When it was enriched on several non-overlapping 
subtrees, we indicated this fact by an asterisk in Fig. 4A. 

All enriched transcription factors were then manually examined, rejecting those 
with substantial (but not statistically significant) background expression in some or 
most subclasses. Fig. 4A shows the resulting enriched transcription factors.  

Enrichment of genes expressed in ependymal cells (Fig. 4B) was calculated by 
comparing expression in each of the nine major classes individually against the basal 
expression given by the linear regression. We retained only genes that were enriched 
with 99.9% posterior probability in ependymal cells, and not enriched in any other 
class. The same analysis was applied to all nine major classes of cells, and the results 
are given in Table S1. 
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Fig. S1. Technical performance.  
(A) Total cell counts by mouse age. (B) Total cell counts by sex (gray bar, not 
determined). (C) Number of cells passing QC from each Fluidigm C1 run. (D) 
Breakdown of all reads in our data according their alignment in the genome (pie chart, 
left) and breakdown of all RNA molecules by genomic feature class (right). mRNA, 
polyadenylated RNAs, including non-coding RNAs, but excluding expressed repeats. 
(E) Average total molecules per cell in each subclass of cells, for mRNA, mt-RNA 
and mt-tRNA. Colored and ordered as in Fig. S3A (the two brown bars showing high 
mt-tRNA expression are endothelial cells, Vend1 and Vend2). (F) Histogram of 
number of reads per cell. (G) Histogram of number of reads per molecule. (H) 
Average and standard-deviation of number of molecules per cell for every Fluidigm 
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C1 chip. (I) Scatter plot showing correlation between average single-cell and bulk 
control data over 24 Fluidigm C1 chips. (J) Gene expression heatmap comparing 
average single-cell RNA-seq with bulk RNA-seq. Gene order is the same as in Fig. 
S3A and chips are ordered by tissue (S1 or CA1, indicated at top). (K) Representation 
of inferred cell classes and subclasses across chips (and hence, mice; with one 
exception each chip was processed from a different mouse), compared to that 
expected by chance. Red vertical lines in all panels show means. 
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Fig. S2. Quantitative sensitivity and accuracy 
(A) Efficiency of detecting ERCC spike-in RNA. Scatter plot shows number of 
spiked-in molecules versus the average number of observed molecules. Each dot 
represents one ERCC RNA species averaged over all 3005 cells in the dataset. 
Diagonal fields in the background represent equal efficiency of capturing RNA 
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molecules. Inset shows the distribution of capture efficiency across all ERCC spike-in 
transcripts (average was 22%). (B) Detection limit: the probability to detect (at least 
one molecule) of an ERCC transcript as function of the average actual number of 
molecules spiked-in. Dashed line indicates a 50% probability of detection, at 4 
molecules per cell. (C) Coefficient of variance (CV; i.e. standard deviation divided by 
the mean) as a function of the mean observed number of ERCC spike-in molecules, 
shows properties of the technical noise. For low abundance transcripts, noise 
approached the limit given by the Poisson distribution, while at high abundance it was 
greater. Red curve shows empirical fit to the data. (D) Cell-cell correlation matrix 
based on ERCC transcripts over all cells in the data, revealing that reaction conditions 
were highly uniform across several months of experiments. (E) Cell-cell correlation 
matrix based on endogenous genes, showing biological variability in excess of 
technical noise. Cells are sorted in the same order as in Figure 1B. (F) Number of 
genes detected as a function of total number of molecules when sampling randomly 1-
40 cells from the data. Each dot represents one sampling where the total number of 
molecules and the total number of detected genes was calculated. (G) Single molecule 
RNA-FISH (smFISH) targeting Lamp5 (pyramidal and interneurons), Opalin 
(oligodendrocytes), Cnr1 (interneurons) and Gfap (astrocytes). Histograms below 
show comparison between smFISH and single-cell RNA-seq counts for the same 
genes. (H) Example of output from automated counting of smFISH. Nucleus 
represented by DAPI signal is surrounded by a contour and smFISH spots assigned to 
the same cell appear in the color of the contour. (I) Estimated efficiency of single-cell 
RNA-seq, measured as ratio of average single-cell RNA-seq to smFISH (molecule 
counts). (J) Scatter plot of CV versus the mean for all detected genes over all cells in 
the dataset. Each dot represents one gene, measured 3,005 times. Black line show 
expected noise from Poisson distribution and red line show fit to a model with 
additive constant component. Genes were selected for clustering analysis based on 
their distance from the fit line as a measure of variability. 
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Fig. S3. Molecular census of somatosensory S1 cortex and hippocampus CA1 by 
unbiased sampling and single-cell RNA-seq 
(A) Gene expression heatmap of 3,005 single-cells using 5,000 selected highly 
variable genes. Data was clustered using BackSpin resulting in nine main clusters, 
indicated at top, identified based on known cell type-specific genes. (B) Principal 
components analysis on the same data showing the similarity within and between cell-
types. Colors indicate clusters of cells in (A), top row. (C) Frequency of major cell 
classes in S1 cortex, CA1 hippocampus and all cells shown as pie charts. Colored as 
in (A) and (B).  
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Fig. S4. Validation of clustering algorithm 
(A) Comparison with hierarchicical clustering, with colors as in Fig. S3A showing the 
corresponding cluster assignment for each cell in BackSPIN. (B) Hierarchical 
clustering of the S1 pyramidal cells, and selected markers indicative of layer-specific 
cell classes, and oligodendrocytes. (C) Expression of Rasgrf2 across the full set of 
3,005 cells. (D) Comparison with affinity propagation (all cells). (E) Comparison 
with affinity propagation (S1 pyramidal cells). (F) Cluster robustness by resampling 
in S1 pyramidal cells. Blue, resampled BackSPIN clusters. Red, resampled BackSPIN 
clusters after random permutation of cluster labels (null model). (G) Saturation plot 
showing the total number of subclasses observed, as a function of number of cells 
sampled, with the requirement that at least four cells be observed in each cluster. 
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Fig. S5. General properties of major classes of cortical cells 
(A) Histograms of cell diameter, total number of molecules and number of detected 
genes for each one of the nine classes. (B) Representative image of cell from each 
class as they appear during capture on the C1 chip. (C) Examples of class-specific 
genes, two per class. Barplots show raw detected molecule counts over all cells 
(ordered as in Fig. S3) without any normalization. 
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Fig. S6. Neuron subclasses in the somatosensory cortex 
(A) Identification of subclasses in the somatosensory cortex S1 pyramidal group using 
BackSPIN. Heatmap shows expression of all genes enriched in these neurons, with 
rectangles indicating BackSPIN clusters. Barplots below show expression of selected 
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known and novel markers. Subclasses were named after their layer-specificity as 
determined using marker expression in the Allen Brain Atlas. S1PyrL23, layer II-III; 
S1PyrL4, layer IV; S1PyrL5a, layer Va; S1PyrL5, layer V; S1PyrL6, layer VI; 
S1PyrL6b, layer VIb; S1PyrDL, deep layers. (B) In situ hybridization (Allen Brain 
Atlas). ClauPyr was identified as cells mainly located in Claustrum (arrows), based on 
Synpr and Nr4a2 expression, but scattered cells expressing these markers were 
observed scattered throughout S1 and in layer 6b respectively. (C) Identification of 16 
interneurons subclasses using BackSPIN. Heatmap shows the gene expression matrix 
and barplots show selected known and novel markers. Cells with detected EGFP 
signal are marked in green on the GFP bar above heatmap. Fraction of S1/CA1 cells 
is depicted at bottom: blue, S1; yellow, CA1; white, flow sorted Htr3a+ cells from S1. 
(D) Proportion of interneurons subgroups in S1 or CA1 depicted by the length of 
colored blocks. White blocks represent FACS sorted cells, marked to facilitate a fair 
comparison of subclass abundances. Names of selected known markers expressed in 
each subgroup are shown together with the proposed morphology in S1.  (E) Example 
traces additional PAX6+ neurons recorded in layer 1 showing a late-spiking firing. 
Two of the cells had a slight bi-phasic after hyperpolarization (black arrows) not seen 
in the other PAX6+ cells. 
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Fig. S7. Previously described layer-specific markers  
Barchart showing the average (± standard deviation) expression of previously 
described layer-specific markers, in subclasses defined in this paper (left) and 
previously (right, from ref. (1)). 
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Out of 296
    # Bonf. α
nervous system development    55   2.2E-10
transmission of nerve impulse    24   5.7E-7
cell differentiation    70   1.4E-6
multicellular organismal development 96   1.5E-6
developmental process   101  2.8E-6
system development     82   3.1E-6
generation of neurons    34  6.3E-6
cellular developmental process    70  8.5E-6
synaptic transmission    20  9.4E-6

Out of 221
      # Bonf. α
generation of precursor metabolites and energy  28 2.4E-15
oxidative phosphorylation    15 1.8E-12
ATP synthesis coupled proton transport   11 9.7E-9
energy coupled proton transport, down electrochemical gradient 11 9.7E-9
proton transport     12 1.6E-8
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ion transmembrane transport    11 3.9E-8
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Fig. S8. Hippocampus CA1 pyramidal cells 
Clustering using BackSPIN of pyramidal CA1 neurons. We classified the resulting 
clusters into three CA1 pyramidal neurons subclasses (CA1Pyr1, CA1Pyr2, 
CA1PyrInt) and two originating from adjacent tissues (CA2Pyr2, hippocampus CA2 
pyramidal neuron; and SubPyr, subiculum pyramidal neuron). Gene enrichment 
analysis of the two main blocks of genes is shown at right. α values are P values 
Bonferroni-corrected for multiple testing.  
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Fig. S9. Microglia and oligodendrocytes. 
(A) Cluster analysis of microglia, brain perivascular and peritoneal macrophages. (B) 
Additional immunofluorescence stainings for microglia (Mgl) and perivascular 
macrophages (Pvm). MRC1 (Pvm), CD68 (Pvm), AIF1 (also known as Iba-1, Mgl + 
Pvm), ACTA2 (also known as ASMA, vascular smooth muscle cells), MRC1 (Pvm) 
and POD (Podocalyxin, vessels/endothelial cells). (C) Cluster analysis of 
oligodendrocytes, and barplots for selected known and novel markers.  
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Fig. S10. Classification of astrocytes and vascular-related cells  
(A) Clustering of ependymal, choroid plexus epithelial and astrocytes cells, using 
BackSPIN. Single ependymal (Epend) and choroid plexus epithelial cell (Choroid) 
classes were found, but analysis suggested two main subclasses of astrocytes (Astro1 
and Astro2). Barplots show representative markers, ordered left-to-right as in the 
heatmap. (B) Clustering of vascular related cells, using BackSPIN. Vascular smooth 
muscle cells (Vsmc) and pericytes (Peric) were identified, as well as two distinct 
classes of endothelial cells (Vend1 and Vend2). Bar plots show representative 
markers. 
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Fig. S11. Dissection scheme 
(A) Dissected brain regions in the somatosensory cortex shown in orange contour on 
three coronal sections from different levels. (B) Dissected brain regions in the CA1 
hippocampus shown in orange contour on three coronal sections. 
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