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Understanding the genetic basis of complex brain disorders 
is critical for developing rational therapeutics. In the past 
decade, genome-wide association studies (GWASs) have 

identified thousands of highly significant loci1–4. However, interpre-
tation of GWASs remains challenging. First, >90% of the identified 
variants are located in noncoding regions5, complicating precise 
identification of risk genes. Second, extensive linkage disequilib-
rium present in the human genome confounds efforts to pinpoint 
causal variants. Finally, it remains unclear in which tissues and cell 
types these variants are active, and how they disrupt specific bio-
logical networks to impact disease risk.

Functional genomic studies of the brain are now seen as critical 
for interpretation of GWAS findings, as they can identify functional 
regions (for example, open chromatin, enhancers and transcription-
factor-binding sites) and target genes (via chromatin interactions 
and expression quantitative trait loci)6. Gene regulation varies sub-
stantially across tissues and cell types7,8, and hence it is critical to 
perform functional genomic studies in empirically identified cell 
types or tissues.

Multiple groups have developed strategies to identify tissues 
associated with complex traits9–13, but few have focused on the iden-
tification of salient cell types within a tissue. Furthermore, previ-
ous studies used a small number of cell types derived from one or 
few different brain regions3,11–17. For example, we recently showed 
that, among 24 brain cell types, 4 types of neuron were consistently 
associated with schizophrenia11. We were explicit that this conclu-
sion was limited by the relatively few brain regions studied; other 
cell types from unsampled regions could conceivably contribute to  
the disorder.

Here, we integrate a wider range of gene expression data—tissues 
across the human body and single-cell gene expression data from an 
entire nervous system—to identify tissues and cell types underlying 
a large number of complex traits (Fig. 1a,b). We find that psychi-
atric and cognitive traits are generally associated with similar cell 
types whereas neurological disorders are associated with different 
cell types. Notably, we show that Parkinson’s disease is associated 
with cholinergic and monoaminergic neurons, enteric neurons and 
oligodendrocytes, providing new clues into its etiology.
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Results
Association of traits with tissues by using bulk RNA sequencing. 
Our goal was to use GWAS results to identify relevant tissues and 
cell types. Our primary focus was human phenotypes whose etio-
pathology is based in the central nervous system (CNS). We thus 
obtained 18 sets of GWAS summary statistics for brain-related com-
plex traits. For comparison, we included GWAS summary statistics 
for eight diseases and traits with large sample sizes whose etiopa-
thology is not rooted in the CNS (Methods).

We first aimed to identify human tissues showing enrichment for 
genetic associations using bulk-tissue RNA sequencing (RNA-seq; 
37 tissues) from the Genotype-Tissue Expression (GTEx) project7.  
To robustly identify tissues implied by these 26 GWASs, we used 
2 approaches (MAGMA18 and LDSC12,19) that employ different 
assumptions (Methods). For both methods, we tested whether the 
10% most specific genes in each tissue were enriched in genetic 
associations with the different traits (Fig. 1b).

Examination of non-brain-related traits found, as expected, 
associations with salient tissues. For example, as shown in Fig. 1d  
and Supplementary Table 1, inflammatory bowel disease was 
strongly associated with immune tissues (blood and spleen) and 
alimentary tissues impacted by the disease (small intestine and 
colon). Lung and adipose tissues were also significantly associated 
with inflammatory bowel disease, possibly because of the high spec-
ificity of immune genes in these two tissues (Extended Data Fig. 1). 
Type 2 diabetes was associated with the pancreas, while hemoglo-
bin A1C, which is used to diagnose type 2 diabetes and monitor  

glycemic controls in individuals with diabetes, was associated with 
the pancreas, liver and stomach (Fig. 1d). Stroke and coronary 
artery disease were most associated with blood vessels and waist-
to-hip ratio was most associated with adipose tissue (Fig. 1d and 
Supplementary Fig. 1).

For brain-related traits (Fig. 1c, Supplementary Fig. 1 and 
Supplementary Table 1), 13 of 18 traits were significantly associ-
ated with 1 or more GTEx brain regions. For example, schizophre-
nia, intelligence, educational attainment, neuroticism, body mass 
index (BMI) and major depressive disorder (MDD) were most sig-
nificantly associated with the brain cortex, frontal cortex or anterior 
cingulate cortex, while Parkinson’s disease was most significantly 
associated with the substantia nigra (as expected) and spinal cord 
(Fig. 1c). Alzheimer’s disease was associated with tissues with prom-
inent roles in immunity (blood and spleen) consistent with other 
studies16,20,21, but also with the substantia nigra and spinal cord, 
while stroke was associated with blood vessels (consistent with a 
role of arterial pathology in stroke)22.

In conclusion, we show that tissue-level gene expression allows 
identification of relevant tissues for complex traits, indicating that 
our methodology is suitable to explore associations between trait 
and gene expression at the cell-type level.

Association of brain complex traits with cell types. We leveraged 
gene expression data from 39 broad categories of cell types from the 
mouse central and peripheral nervous system23 to systematically map 
brain-related traits to cell types (Fig. 2a and Extended Data Fig. 2).  
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Fig. 1 | Study design and tissue-level associations. a, Heat map of associations between trait and tissue/cell type (−log10[P]) for the selected traits.  
b, Associations between trait and tissue/cell type were performed using MAGMA and LDSC (testing for enrichment in genetic association of the 10% 
most specific genes in each tissue/cell type). c, Tissue–trait associations for selected brain-related traits. d, Tissue–trait associations for selected  
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Our use of mouse data to inform human genetic findings was care-
fully considered (see Discussion).

As in our previous study of schizophrenia based on a small num-
ber of brain regions11, we found the strongest signals for telencepha-
lon projecting neurons (that is, excitatory neurons from the cortex, 
hippocampus and amygdala), telencephalon projecting inhibitory 
neurons (that is, medium spiny neurons from the striatum) and  
telencephalon inhibitory neurons (Fig. 2a and Supplementary  
Table 2). We also found that other types of neuron were associated 
with schizophrenia albeit less significantly (for example, dentate 
gyrus granule neurons). Other psychiatric and cognitive traits had 
similar cellular association patterns to schizophrenia (Extended 
Data Figs. 2 and 3 and Supplementary Table 2). We did not observe 
significant associations with immune or vascular cells for any  
psychiatric disorders or cognitive traits.

Neurological disorders generally implicated fewer cell types, 
possibly because the neurological GWAS had a lower signal than 
the GWASs of cognitive, anthropometric and psychiatric traits 
(Supplementary Fig. 2). Consistent with the genetic correlations 
(Supplementary Note), the pattern of associations for neurological 
disorders was distinct from that of psychiatric disorders (Extended 

Data Figs. 2 and 3), reflecting that neurological disorders have mini-
mal functional overlap with psychiatric disorders24.

Stroke was significantly associated with vascular smooth muscle 
cells (Fig. 2a), consistent with an important role of vascular pro-
cesses for this trait. Alzheimer’s disease had the strongest signal in 
microglia, as reported previously10,16,25, but the association did not 
survive multiple testing correction.

We found that Parkinson’s disease was significantly associated 
with cholinergic and monoaminergic neurons (Fig. 2a). This clus-
ter consists of neurons (Supplementary Table 3) that are known to 
degenerate in Parkinson’s disease26–28, such as dopaminergic neu-
rons from the substantia nigra (the hallmark of Parkinson’s disease), 
but also serotonergic and glutamatergic neurons from the raphe 
nucleus29, noradrenergic neurons30, and neurons from afferent 
nuclei in the pons31 and the medulla (the brain region associated 
with the earliest lesions in Parkinson’s disease26). In addition, hind-
brain neurons and peptidergic neurons were also significantly asso-
ciated with Parkinson’s disease (with LDSC alone). Interestingly, 
we also found that enteric neurons were significantly associated 
with Parkinson’s disease (Fig. 2a), which is consistent with Braak’s 
hypothesis, which postulates that Parkinson’s disease could start in 
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Fig. 2 | Association of selected brain-related traits with cell types from the entire nervous system. a, Associations of the 10 most associated cell types.  
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the gut and travel to the brain via the vagus nerve32,33. Furthermore, 
we found that oligodendrocytes (mainly sampled in the midbrain, 
medulla, pons, spinal cord and thalamus; Supplementary Fig. 3) 
were significantly associated with Parkinson’s disease, indicating a 
strong glial component to the disorder. This finding was unexpected 
but consistent with the strong association of the spinal cord at the 
tissue level (Fig. 1c), as the spinal cord contains the highest propor-
tion of oligodendrocytes (71%) in the nervous system23. Together, 
these findings provide genetic evidence for a role of enteric neurons, 
cholinergic and monoaminergic neurons, and oligodendrocytes in 
Parkinson’s disease etiology.

Neuronal prioritization in the mouse CNS. A key goal of this 
study was to prioritize specific cell types for follow-up experimental 
studies. As our metric of gene expression specificity was computed 
based on all cell types in the nervous system, it is possible that the 
most specific genes in a given cell type capture genes that are shared 
within a high-level category of cell types (for example, neurons). To 
rule out this possibility, we computed new specificity metrics based 
only on neurons from the CNS. We then tested whether the 10% 
most specific genes for each CNS neuron were enriched in genetic 
association for the brain-related traits that had a significant associa-
tion with a CNS neuron (13/18) in our initial analysis.

Using the CNS neuron gene expression specificity metrics, we 
observed a reduction in the number of neuronal cell types associ-
ated with the different traits (Extended Data Fig. 4), suggesting that 
some of the signal was driven by core neuronal genes. However, we 
found that multiple neuronal cell types remained associated with 
a number of traits. For example, we found that telencephalon pro-
jecting excitatory and projecting inhibitory neurons were strongly 
associated with schizophrenia, bipolar disorder, educational attain-
ment and intelligence using both LDSC and MAGMA. Similarly, 
telencephalon projecting excitatory neurons were significantly 
associated with BMI, neuroticism, MDD, autism and anorexia using 
one of the two methods, while hindbrain neurons and cholinergic 
and monoaminergic neurons remained significantly associated with 
Parkinson’s disease.

Together, these results suggest that specific types of CNS  
neuron can be prioritized for follow-up experimental studies for 
multiple traits.

Trait and cell-type associations conditioning on other traits. As 
noted above, the patterns of associations of psychiatric and cogni-
tive traits were highly correlated across the 39 different cell types 
tested (Extended Data Fig. 3). For example, the Spearman rank 
correlation of cell-type associations (−log10[P]) between schizo-
phrenia and intelligence was 0.96 (0.94 for educational attainment) 
as both traits had the strongest signal in telencephalon projecting 
excitatory neurons and little signal in immune or vascular cells. In 
addition, we observed that genes driving the association signal in 
the top cell types of the two traits were enriched in relatively simi-
lar Gene Ontology (GO) terms involving neurogenesis and synaptic 
processes (Supplementary Note). We evaluated two possible expla-
nations for these findings: schizophrenia and intelligence are both 
associated with the same genes that are specifically expressed in the 
same cell types; or schizophrenia and intelligence are associated 
with different sets of genes that are both specific to the same cell 
types. Given that these two traits have a significant negative genetic 
correlation (rg = −0.22, from GWAS results alone) (Supplementary 
Table 4), we hypothesized that the strong overlap in cell-type asso-
ciations for schizophrenia and intelligence was due to the second 
explanation.

To evaluate these hypotheses, we tested whether the 10% most 
specific genes for each cell type were enriched in genetic associa-
tions for schizophrenia controlling for the gene-level genetic asso-
ciation of intelligence using MAGMA (and vice versa) and found 

that the patterns of associations were largely unaffected. Similarly, 
we found that controlling for educational attainment had little effect 
on the schizophrenia associations and vice versa (Extended Data 
Fig. 5). In other words, genes driving the cell-type associations of 
schizophrenia appear to be distinct from genes driving the cell-type 
associations of cognitive traits.

Trait and cell-type associations conditioning on cell types. Many 
neuronal cell types passed our stringent significance threshold for 
multiple brain traits (Fig. 2a). This could be because gene expres-
sion profiles are highly correlated across cell types and/or because 
many cell types are independently associated with the different 
traits. To address this, we performed univariate conditional analy-
sis using MAGMA, testing whether cell-type associations remained 
significant after controlling for the 10% most specific genes from 
other cell types (Supplementary Table 5). We observed that multi-
ple cell types were independently associated with age at menarche, 
anorexia, autism, bipolar disorder, BMI, educational attainment, 
intelligence, MDD, neuroticism and schizophrenia (Supplementary 
Fig. 4). As in our previous study11, we found that the association 
between schizophrenia and telencephalon projecting inhibitory 
neurons (that is, medium spiny neurons) was independent from 
telencephalon projecting excitatory neurons (that is, pyramidal 
neurons). For Parkinson’s disease, enteric neurons, oligodendro-
cytes and cholinergic and monoaminergic neurons were indepen-
dently associated with the disorder (Fig. 2b), suggesting that these 
three different cell types play an independent role in the etiology 
of the disorder.

Replication in other single-cell RNA-seq datasets. To assess the 
robustness of our results, we repeated these analyses in independent 
datasets. A key caveat is that these other datasets did not sample the 
entire nervous system as in the analyses above.

First, we used a single-cell RNA-seq dataset that identified 88 
broad categories of cell types from 9 mouse brain regions34. We 
found similar patterns of association in this external dataset (Fig. 3a,  
Extended Data Fig. 6 and Supplementary Table 6). Notably, for 
schizophrenia, we strongly replicated associations with neurons 
from the cortex, hippocampus and striatum. We also observed simi-
lar cell-type associations for other psychiatric and cognitive traits 
(Fig. 3a and Extended Data Figs. 6 and 7). For neurological disor-
ders, we found that stroke was significantly associated with mural 
cells while Alzheimer’s disease was significantly associated with 
microglia (Extended Data Fig. 6). The associations of Parkinson’s 
disease with neurons from the substantia nigra and oligodendro-
cytes were significant at a nominal level in this dataset (P = 0.006 for 
neurons from the substantia nigra; P = 0.027 for oligodendrocytes 
using LDSC). By computing gene expression specificity within neu-
rons, we replicated our findings that neurons from the cortex can 
be prioritized for multiple traits (schizophrenia, bipolar disorder, 
educational attainment, intelligence, BMI, neuroticism, MDD and 
anorexia; Extended Data Fig. 8).

Second, we reanalyzed these GWAS datasets using our previous 
dataset11 (24 cell types from 5 mouse brain regions; Fig. 3b, Extended 
Data Fig. 9 and Supplementary Table 7). We again found strong 
associations of pyramidal neurons from the somatosensory cortex, 
pyramidal neurons from region 1 of the cornu ammonis (CA1) of 
the hippocampus (both corresponding to telencephalon projecting 
excitatory neurons in our main dataset) and medium spiny neu-
rons from the striatum (corresponding to telencephalon projecting 
inhibitory neurons) with psychiatric and cognitive traits. MDD and 
autism were most associated with neuroblasts, while intracranial 
volume was most associated with neural progenitors. The associa-
tion of dopaminergic adult neurons with Parkinson’s disease was 
significant at a nominal level using LDSC (P = 0.01), while oligo-
dendrocytes did not replicate in this dataset, perhaps because they 
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were not sampled from the regions affected by the disorder (that is, 
spinal cord, pons, medulla or midbrain). A within-neuron analysis 
again found that projecting excitatory (that is, pyramidal CA1) and 
projecting inhibitory neurons (that is, medium spiny neurons) can 
be prioritized for multiple traits (schizophrenia, bipolar disorder, 
intelligence, educational attainment and BMI). In addition, neuro-
blasts could be prioritized for MDD and neural progenitors could 
be prioritized for intracranial volume (Extended Data Fig. 10).

Third, we evaluated a human dataset consisting of 15 differ-
ent cell types from the cortex and hippocampus35 (Fig. 4a and 
Supplementary Table 8). We replicated our findings with psychiatric 
and cognitive traits being associated with pyramidal neurons (excit-
atory) and interneurons (inhibitory) from the somatosensory cortex 
and hippocampus. We also replicated the association of Parkinson’s 
disease with oligodendrocytes (enteric neurons and cholinergic and 
monoaminergic neurons were not sampled in this dataset). No cell 
types reached our significance threshold using specificity metrics 
computed within neurons, possibly because of similarities in the 
transcriptomes of neurons from the cortex and hippocampus.

Fourth, we evaluated a human dataset consisting of 35 different 
cell types from 3 different brain regions (visual cortex, frontal cortex 
and cerebellum) (Fig. 4b and Supplementary Table 9)36. We found 
that schizophrenia, educational attainment, neuroticism and BMI 
were associated with excitatory neurons, while bipolar disorder was 
associated with both excitatory and inhibitory neurons. As observed 
previously10,16,25, Alzheimer’s disease was significantly associated 

with microglia. Oligodendrocytes were not significantly associated 
with Parkinson’s disease in this dataset, again possibly because the 
spinal cord, pons, medulla and midbrain were not sampled. No cell 
types reached our significance threshold using specificity metrics 
computed within neurons in this dataset.

Validation of oligodendrocyte pathology in Parkinson’s dis-
ease. We investigated the role of oligodendrocytes in Parkinson’s 
disease. First, we confirmed the association of oligodendro-
cytes with Parkinson’s disease by combining evidence across all 
datasets (Fisher’s combined probability test, P = 2.5 × 10−7 using 
MAGMA and 6.3 × 10−3 using LDSC; Supplementary Table 2 and 
Supplementary Fig. 5). In addition, oligodendrocytes remained 
significantly associated with Parkinson’s disease after conditioning 
on the top neuronal cell type in each dataset (P = 1.2 × 10−7, Fisher’s 
combined probability test).

Second, we tested whether genes with rare variants associated 
with parkinsonism (Supplementary Table 10) were specifically 
expressed in cell types from the mouse nervous system (Methods). 
As for the common variant, we found the strongest enrichment for 
cholinergic and monoaminergic neurons (Supplementary Table 11). 
However, we did not observe any significant enrichments for oligo-
dendrocytes or enteric neurons for these genes.

Third, we applied expression-weighted cell-type enrichment 
(EWCE)10 to test whether genes that are upregulated/downregu-
lated in post-mortem brains from humans with Parkinson’s disease 

Posterior cortex – neurons

a

b

Schizophrenia

Autism

Schizophrenia

Autism

Bipolar disorder

MDD

Bipolar disorder

MDD

Intelligence

Intracranial volume

Intelligence

Intracranial volume

Frontal cortex – neurons

Striatum – neurons

Hippocampus – neurons

Globus pallidus externus and nucleus basalis – neurons

Cerebellum – neurons

Substantia nigra and ventral tegmental area – neurons

Thalamus – neurons

Entopeduncular and subthalamic nuclei – neurons

Globus pallidus externus and nucleus basalis – polydendrocytes

Posterior cortex – neurons

Posterior cortex – neurons

Frontal cortex – neurons

Striatum – neurons

Hippocampus – neurons

Globus pallidus externus and nucleus basalis – neurons

Cerebellum – neurons

Substantia nigra and ventral tegmental area – neurons

Thalamus – neurons

Entopeduncular and subthalamic nuclei – neurons

Posterior cortex – polydendrocytes

Posterior cortex – neurons

Posterior cortex – neurons

Posterior cortex – mural

Cerebellum – endothelial stalk

Cerebellum – polydendrocytes

Frontal cortex – neurons

Striatum – neurons

Hippocampus – neurons

Globus pallidus externus and nucleus basalis – neurons

Cerebellum – neurons

Thalamus – neurons

Thalamus – astrocytes

Substantia nigra and ventral tegmental area – neurons

Entopeduncular and subthalamic nuclei – neurons

Substantia nigra and ventral tegmental area – endothelial stalk

Thalamus – endothelial stalk

Frontal cortex – endothelial stalk

Posterior cortex – endothelial stalk

Hippocampus – endothelial stalk

Globus pallidus externus and nucleus basalis – endothelial stalk

Significant

Both

MAGMA

LDSC

None

Significant

Both

MAGMA

LDSC

None

Posterior cortex – neurons

Frontal cortex – neurons

Striatum – neurons

Striatum – macrophage

Medium spiny neurons

Pyramidal neuron CA1

Pyramidal neuron SS

Interneurons

Striatal interneurons

Embryonic GABAergic neurons

Embryonic midbrain nucleus neurons

Serotonergic neurons

Neuroblasts

Oligodendrocytes

Medium spiny neurons

Pyramidal neurons CA1

Pyramidal neuron SS

Interneurons

Striatal interneurons

Embryonic GABAergic neurons

Embryonic midbrain nucleus neurons

Embryonic dopaminergic neurons

Serotonergic neurons

0 2.5 5.0 7.5 10.0 0 2.5

Mean(–log10[P ])Mean(–log10[P ]) Mean(–log10[P ])

5.0 7.5 10.0 0 2.5 5.0 7.5 10.0

Neuroblasts

Medium spiny neuron

Pyramidal neurons CA1

Pyramidal neurons SS

Interneurons

Striatal interneuron

Embryonic GABAergic neurons

Dopaminergic neuroblast

Dopaminergic adult neurons

Serotonergic neurons

Neuroblasts

Medium spiny neurons

Pyramidal neurons CA1

Pyramidal neurons SS

Neural progenitors

Radial glia-like cells

Embryonic GABAergic neurons

Dopaminergic neuroblast

Embryonic dopaminergic neurons

Embryonic midbrain nucleus neurons

Neuroblasts

Medium spiny neurons

Pyramidal neurons CA1

Pyramidal neurons SS

Interneurons

Striatal interneurons

Embryonic GABAergic neurons

Embryonic midbrain nucleus neurons

Dopaminergic adult neurons

Serotonergic neurons

Neuroblasts

Medium spiny neurons

Pyramidal neurons CA1

Pyramidal neurons SS

Interneurons

Striatal interneuron

Embryonic GABAergic neurons

Embryonic dopaminergic neurons

Dopaminergic neuroblast

Serotonergic neurons

Neuroblasts

0 5 10 0 5

Mean(–log10[P ]) Mean(–log10[P ])Mean(–log10[P ])

10 0 5 10

Hippocampus – neurons

Hippocampus – neurogenesis

Globus pallidus externus and nucleus basalis – neurons

Cerebellum – neurons

Thalamus – neurons

Entopeduncular and subthalamic nuclei – neurons

Posterior cortex – microgila

Frontal cortex – neurons

Striatum – neurons

Hippocampus – neurons

Substantia nigra and ventral tegmental area – neurons

Globus pallidus externus and nucleus basalis – neurons

Cerebellum – neurons

Thalamus – neurons

Entopeduncular and subthalamic nuclei – neurons

Fig. 3 | Replication of associations between cell type and trait in mouse datasets. a, Tissue–trait associations for the 10 most associated cell types among 88 
cell types from 9 different brain regions. b, Tissue–trait associations for the 10 most associated cell types among 24 cell types from 5 different brain regions. 
The mean strength of association (−log10[P]) of MAGMA and LDSC is shown, and the bar color indicates whether the cell type is significantly associated 
with both methods, one method or none (significance threshold: 5% false discovery rate). SS, somatosensory cortex; CA1, cornu ammonis region 1.

NATuRE GENETICS | VOL 52 | MAy 2020 | 482–493 | www.nature.com/naturegenetics486

http://www.nature.com/naturegenetics


ArticlesNatUrE GENEtics

(from six separate cohorts) were enriched in cell types located in the 
substantia nigra and ventral midbrain (Fig. 5). Three of the stud-
ies had a case–control design and measured gene expression in: the 
substantia nigra of 9 controls and 16 cases37; the medial substantia 
nigra of 8 controls and 15 cases38; and the lateral substantia nigra of 
7 controls and 9 cases38. In all three studies, downregulated genes in 
Parkinson’s disease were specifically enriched in dopaminergic neu-
rons (consistent with the loss of this particular cell type in disease), 
while upregulated genes were significantly enriched in cells from 
the oligodendrocyte lineage. This suggests that an increased oligo-
dendrocyte activity or proliferation could play a role in Parkinson’s 
disease etiology. Surprisingly, no enrichment was observed for 
microglia, despite recent findings39,40.

We also analyzed gene expression data from post-mortem human 
brains that had been scored by neuropathologists for their Braak 
stage41. Differential expression was calculated between brains with 
Braak scores of 0 (controls) and brains with Braak scores of 1–2, 3–4 
and 5–6. At the later stages (Braak scores 3–4 and 5–6), downregu-
lated genes were specifically expressed in dopaminergic neurons, 
while upregulated genes were specifically expressed in oligoden-
drocytes (Fig. 5), as observed in the case–control studies. Moreover, 
Braak stages 1 and 2 are characterized by little degeneration in the 

substantia nigra, and consistently, we found that downregulated genes 
were not enriched in dopaminergic neurons at this stage. Notably, 
upregulated genes were already strongly enriched in oligodendro-
cytes at Braak stages 1–2. These results not only support the genetic 
evidence indicating that oligodendrocytes may play a causal role in 
Parkinson’s disease but also indicate that their involvement precedes 
the emergence of pathological changes in the substantia nigra.

Discussion
In this study, we used gene expression data from cells sampled from 
the entire nervous system to systematically map cell types to GWAS 
results from multiple psychiatric, cognitive and neurological com-
plex phenotypes.

We note several limitations. First, we emphasize that we can impli-
cate a particular cell type, but it is premature to exclude cell types 
for which we do not have data11. Second, we used gene expression 
data from mice to understand human phenotypes. We believe our 
approach is appropriate for several reasons. First, crucially, the key 
findings were replicated in human data. Second, single-cell RNA-seq 
is achievable in mouse but difficult in human neurons (where single-
nuclei RNA-seq is typical35,36,42,43). In the brain, differences between 
single-cell and single-nuclei RNA-seq are important as transcripts 
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that are missed by sequencing nuclei are important for psychiat-
ric disorders11, and we previously showed that dendritically trans-
ported transcripts are specifically depleted from nuclei datasets11  
(confirmed in four additional datasets; Supplementary Fig. 6). 
Third, correlations in gene expression for cell type across species are 
high (median correlation 0.68; Supplementary Fig. 7), and as high 
as or higher than correlations across methods within cell type and 
species (single-cell versus single-nuclei RNA-seq, median correla-
tion 0.6)44. Fourth, we evaluated only protein-coding genes with 1:1 
orthologs between mice and humans, which are highly conserved. 
Fifth, we previously showed that gene expression data cluster by 
cell type and not by species11, indicating broad conservation of core 
brain cellular functions across species. Sixth, we used a large num-
ber of genes to map cell types to traits (~1,500 genes for each cell 
type), minimizing potential bias due to individual genes differen-
tially expressed across species. Seventh, if there were strong differ-
ences in cell-type gene expression between mice and humans, we 
would not expect that specific genes in mouse cell types would be 
enriched in genetic associations with human disorders. However, it 
remains possible that some cell types have different gene expression 
patterns between mice and humans, are present in only one species, 
have a different function or are involved in different brain circuits.

A third limitation is that gene expression data were from adoles-
cent mice. Although many psychiatric and neurological disorders 
have onsets in adolescence, some have onsets earlier (autism) or 

later (Alzheimer’s and Parkinson’s disease). It is thus possible that 
some cell types are vulnerable at specific developmental times. 
Data from studies mapping cell types across brain development and 
aging are required to resolve this issue.

We found that psychiatric traits implicated largely similar cell 
types. These biological findings are consistent with genetic and epi-
demiological evidence of a general psychopathy factor underlying 
diverse psychiatric disorders24,45,46. Although intelligence and edu-
cational attainment implicated similar cell types, conditional analy-
ses showed that the same cell types were implicated for different 
reasons. This suggests that different sets of genes highly specific to 
the same cell types contribute independently to schizophrenia and 
cognitive traits.

Our findings for neurological disorders were strikingly different 
from those for psychiatric disorders. We found, in contrast to pre-
vious studies that either did not identify any cell-type associations 
with Parkinson’s disease47 or identified significant associations with 
cell types from the adaptive immune system40, that cholinergic and 
monoaminergic neurons (which include dopaminergic neurons), 
enteric neurons and oligodendrocytes were significantly and inde-
pendently associated with the disease. Our findings suggest that 
dopaminergic neuron loss in Parkinson’s disease (the hallmark of 
the disease) is at least partly due to intrinsic biological mechanisms.

Interestingly, enteric neurons were also associated with 
Parkinson’s disease. This result is in line with prior evidence  
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implicating the gut in Parkinson’s disease. Notably, dopaminergic 
defects and Lewy bodies (that is, abnormal aggregates of proteins 
enriched in α-synuclein) are found in the enteric nervous system 
of individuals affected by Parkinson’s disease48,49. In addition, Lewy 
bodies have been observed in individuals up to 20 years before their 
diagnosis50, and sectioning of the vagus nerve (which connects the 
enteric nervous system to the CNS) was shown to reduce the risk 
of developing Parkinson’s disease51. Therefore, our results linking 
enteric neurons with Parkinson’s disease provide new genetic evi-
dence for Braak’s hypothesis32.

The association of oligodendrocytes with Parkinson’s disease 
was more unexpected. A possible explanation is that this associa-
tion could be due to a related disorder (for example, multiple-sys-
tem atrophy, characterized by parkinsonism and accumulation of 
α-synuclein in glial cytoplasmic inclusions52). However, this expla-
nation is unlikely as multiple-system atrophy is a very rare disor-
der; hence, only a few individuals could have been included in the 
Parkinson’s disease GWAS. In addition, misdiagnosis is unlikely to 
have led to the association of Parkinson’s disease with oligodendro-
cytes. Indeed, we found a high genetic correlation between self-
reported diagnosis from the 23andMe cohort and a previous GWAS 
of clinically ascertained Parkinson’s disease53.

We did not find an association of oligodendrocytes with parkin-
sonism for genes affected by rare variants. This result may reflect 
etiological differences between sporadic and familial forms of the 
disease or low statistical power. Previous evidence has suggested an 
involvement of oligodendrocytes in Parkinson’s disease. For exam-
ple, α-synuclein-containing inclusions have been reported in oligo-
dendrocytes in the brains of individuals with Parkinson’s disease54. 
These inclusions (‘coiled bodies’) are typically found throughout 
the brainstem nuclei and fiber tracts55. Although the presence of 
coiled bodies in oligodendrocytes is a common, specific and well-
documented neuropathological feature of Parkinson’s disease, the 
importance of this cell type and its early involvement in disease has 
not been fully recognized. Our findings suggest that alterations in 
oligodendrocytes occur at an early stage of disease, which precedes 
neurodegeneration in the substantia nigra, arguing for a key role of 
this cell type in Parkinson’s disease etiology.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author 
contributions and competing interests; and statements of data and 
code availability are available at https://doi.org/10.1038/s41588-
020-0610-9.

Received: 23 July 2019; Accepted: 6 March 2020;  
Published online: 27 April 2020

References
 1. Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in 

mutation-intolerant genes and in regions under strong background selection. 
Nat. Genet. 50, 381–389 (2018).

 2. Lee, J. J., Wedow, R. & Okbay Gene discovery and polygenic prediction from 
a genome-wide association study of educational attainment in 1.1 million 
individuals. Nat. Genet. 50, 1112–1121 (2018).

 3. Nagel, M. et al. Meta-analysis of genome-wide association studies for 
neuroticism in 449,484 individuals identifies novel genetic loci and pathways. 
Nat. Genet. 50, 920–927 (2018).

 4. Yengo, L. et al. Meta-analysis of genome-wide association studies for height 
and body mass index in ∼700000 individuals of European ancestry. Hum. 
Mol. Genet. 27, 3641–3649 (2018).

 5. Maurano, M. T. et al. Systematic localization of common disease-associated 
variation in regulatory DNA. Science 337, 1190–1195 (2012).

 6. Akbarian, S. et al. The PsychENCODE project. Nat. Neurosci. 18,  
1707–1712 (2015).

 7. Aguet, F. et al. Genetic effects on gene expression across human tissues. 
Nature 550, 204–213 (2017).

 8. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference 
human epigenomes. Nature 518, 317–329 (2015).

 9. Ongen, H. et al. Estimating the causal tissues for complex traits and diseases. 
Nat. Genet. 49, 1676–1683 (2017).

 10. Skene, N. G. & Grant, S. G. N. Identification of vulnerable cell types in major 
brain disorders using single cell transcriptomes and expression weighted cell 
type enrichment. Front. Neurosci. 10, 1–11 (2016).

 11. Skene, N. G. et al. Genetic identification of brain cell types underlying 
schizophrenia. Nat. Genet. 50, 825–833 (2018).

 12. Finucane, H. K. et al. Heritability enrichment of specifically expressed  
genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 
621–629 (2018).

 13. Calderon, D. et al. Inferring relevant cell types for complex traits by using 
single-cell gene expression. Am. J. Hum. Genet. 101, 686–699 (2017).

 14. Savage, J. E. et al. Genome-wide association meta-analysis in 269,867 
individuals identifies new genetic and functional links to intelligence. Nat. 
Genet. 50, 912–919 (2018).

 15. Coleman, J. R. I. et al. Biological annotation of genetic loci associated with 
intelligence in a meta-analysis of 87,740 individuals. Mol. Psychiatry 24, 
182–197 (2019).

 16. Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and 
functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 
404–413 (2019).

 17. Nalls, M. A. et al. Identification of novel risk loci, causal insights, and 
heritable risk for Parkinson’s disease: a meta-analysis of genome-wide 
association studies. Lancet Neurol. 18, 1091–1102 (2019).

 18. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: 
generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11,  
1–19 (2015).

 19. Finucane, H. K. et al. Partitioning heritability by functional annotation  
using genome-wide association summary statistics. Nat. Genet. 47,  
1228–1235 (2015).

 20. Jevtic, S., Sengar, A. S., Salter, M. W. & McLaurin, J. A. The role of the 
immune system in Alzheimer disease: etiology and treatment. Ageing Res. 
Rev. 40, 84–94 (2017).

 21. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease 
identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. 
Nat. Genet. 51, 414–430 (2019).

 22. O’Leary, D. H. et al. Carotid-artery intima and media thickness as a risk 
factor for myocardial infarction and stroke in older adults. N. Engl. J. Med. 
340, 14–22 (1999).

 23. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 
999–1014.e22 (2018).

 24. Anttila, V. et al. Analysis of shared heritability in common disorders of the 
brain. Science 360, (2018).

 25. Keren-Shaul, H. et al. A unique microglia type associated with restricting 
development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

 26. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s 
disease. Neurobiol. Aging 24, 197–211 (2003).

 27. Sulzer, D. & Surmeier, D. J. Neuronal vulnerability, pathogenesis, and 
Parkinson’s disease. Mov. Disord. 28, 41–50 (2013).

 28. Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Primers 3, 17013 (2017).
 29. Halliday, G. M. et al. Neuropathology of immunohistochemically identified 

brainstem neurons in Parkinson’s disease. Ann. Neurol. 27, 373–385 (1990).
 30. Delaville, C., de Deurwaerdère, P. & Benazzouz, A. Noradrenaline and 

Parkinson’s disease. Front. Syst. Neurosci. https://doi.org/10.3389/
fnsys.2011.00031 (2011).

 31. Rinne, J. O., Ma, S. Y., Lee, M. S., Collan, Y. & Röyttä, M. Loss of cholinergic 
neurons in the pedunculopontine nucleus in Parkinson’s disease is related to 
disability of the patients. Parkinsonism Relat. Disord. 14, 553–557 (2008).

 32. Braak, H., Rüb, U., Gai, W. P. & Del Tredici, K. Idiopathic Parkinson’s 
disease: possible routes by which vulnerable neuronal types may be  
subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 110, 
517–536 (2003).

 33. Liddle, R. A. Parkinson’s disease from the gut. Brain Res. 1693,  
201–206 (2018).

 34. Saunders, A. et al. Molecular diversity and specializations among the cells of 
the adult mouse brain. Cell 174, 1015–1030.e16 (2018).

 35. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. 
Nat. Methods 14, 955 (2017).

 36. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and 
epigenetic states in the human adult brain. Nat. Biotechnol. 36,  
70–80 (2018).

 37. Lesnick, T. G. et al. A genomic pathway approach to a complex disease: axon 
guidance and Parkinson disease. PLoS Genet. 3, 0984–0995 (2007).

 38. Moran, L. B. et al. Whole genome expression profiling of the medial and 
lateral substantia nigra in Parkinson’s disease. Neurogenetics 7, 1–11 (2006).

 39. Kannarkat, G. T., Boss, J. M. & Tansey, M. G. The role of innate and adaptive 
immunity in Parkinson’s disease. J. Parkinsons Dis. 3, 493–514 (2013).

NATuRE GENETICS | VOL 52 | MAy 2020 | 482–493 | www.nature.com/naturegenetics 489

https://doi.org/10.1038/s41588-020-0610-9
https://doi.org/10.1038/s41588-020-0610-9
https://doi.org/10.3389/fnsys.2011.00031
https://doi.org/10.3389/fnsys.2011.00031
http://www.nature.com/naturegenetics


Articles NatUrE GENEtics

 40. Gagliano, S. A. et al. Genomics implicates adaptive and innate immunity  
in Alzheimer’s and Parkinson’s diseases. Ann. Clin. Transl. Neurol. 3, 
924–933 (2016).

 41. Dijkstra, A. A. et al. Evidence for immune response, axonal dysfunction and 
reduced endocytosis in the substantia nigra in early stage Parkinson’s disease. 
PLoS ONE 10, e0128651 (2015).

 42. Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus 
RNA sequencing of the human brain. Science 352, 1586–1590 (2016).

 43. Sathyamurthy, A. et al. Massively parallel single nucleus transcriptional 
profiling defines spinal cord neurons and their activity during behavior.  
Cell Rep. 22, 2216–2225 (2018).

 44. Lake, B. B. et al. A comparative strategy for single-nucleus and single-cell 
transcriptomes confirms accuracy in predicted cell-type expression from 
nuclear RNA. Sci. Rep. 7, 6031 (2017).

 45. Caspi, A. et al. The p factor: one general psychopathology factor in the 
structure of psychiatric disorders? Clin. Psychol. Sci. 2, 119–137 (2014).

 46. Sullivan, P. F. & Geschwind, D. H. Defining the genetic, genomic, cellular, 
and diagnostic architectures of psychiatric disorders. Cell 177,  
162–183 (2019).

 47. Reynolds, R. H. et al. Moving beyond neurons: the role of cell type-specific 
gene regulation in Parkinson’s disease heritability. NPJ Parkinsons  
Dis. 5, 6 (2019).

 48. Singaram, C. et al. Dopaminergic defect of enteric nervous system in Parkinson’s 
disease patients with chronic constipation. Lancet 346, 861–864 (1995).

 49. Wakabayashi, K., Takahashi, H., Takeda, S., Ohama, E. & Ikuta, F. Lewy 
bodies in the enteric nervous system in Parkinson’s disease. Arch. Histol. 
Cytol. 52, 191–194 (1989).

 50. Stokholm, M. G., Danielsen, E. H., Hamilton-Dutoit, S. J. & Borghammer, P. 
Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson 
disease patients. Ann. Neurol. 79, 940–949 (2016).

 51. Svensson, E. et al. Vagotomy and subsequent risk of Parkinson’s disease.  
Ann. Neurol. 78, 522–529 (2015).

 52. Gilman, S. et al. Second consensus statement on the diagnosis of multiple 
system atrophy. Neurology 71, 670–676 (2008).

 53. Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association 
data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 46, 
989–993 (2014).

 54. Wakabayashi, K., Hayashi, S., Yoshimoto, M., Kudo, H. & Takahashi, H. 
NACP/α-synuclein-positive filamentous inclusions in astrocytes and 
oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol. 99,  
14–20 (2000).

 55. Seidel, K. et al. The brainstem pathologies of Parkinson’s disease and 
dementia with Lewy bodies. Brain Pathol. 25, 121–135 (2015).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2020

Eating Disorders Working Group of the Psychiatric Genomics Consortium

Roger Adan17,18,19, Lars Alfredsson20, Tetsuya Ando21, Ole Andreassen22, Jessica Baker9, 
Andrew Bergen23,24, Wade Berrettini25, Andreas Birgegård26,27, Joseph Boden28, Ilka Boehm29, 
Claudette Boni30, Vesna Boraska Perica31,32, Harry Brandt33, Gerome Breen13,14, Julien Bryois1, 
Katharina Buehren34, Cynthia Bulik1,9,15, Roland Burghardt35, Matteo Cassina36, Sven Cichon37, 
Maurizio Clementi36, Jonathan Coleman13,14, Roger Cone38, Philippe Courtet39, Steven Crawford33, 
Scott Crow40, James Crowley16,26, unna Danner18, Oliver Davis41,42, Martina de Zwaan43, 
George Dedoussis44, Daniela Degortes45, Janiece DeSocio46, Danielle Dick47, Dimitris Dikeos48, 
Christian Dina49,50, Monika Dmitrzak-Weglarz51, Elisa Docampo Martinez52,53,54, Laramie Duncan55, 
Karin Egberts56, Stefan Ehrlich29, Geòrgia Escaramís52,53,54, Tõnu Esko57,58, Xavier Estivill52,53,54,59, 
Anne Farmer13, Angela Favaro45, Fernando Fernández-Aranda60,61, Manfred Fichter62,63, 
Krista Fischer57, Manuel Föcker64, Lenka Foretova65, Andreas Forstner37,66,67,68,69, Monica Forzan36, 
Christopher Franklin31, Steven Gallinger70, Héléna Gaspar13,14, Ina Giegling71, Johanna Giuranna64, 
Paola Giusti-Rodríquez16, Fragiskos Gonidakis72, Scott Gordon73, Philip Gorwood30,74, 
Monica Gratacos Mayora52,53,54, Jakob Grove75,76,77,78, Sébastien Guillaume39, Yiran Guo79, 
Hakon Hakonarson79,80, Katherine Halmi81, Ken Hanscombe82, Konstantinos Hatzikotoulas31, 
Joanna Hauser83, Johannes Hebebrand64, Sietske Helder13,84, Anjali Henders85, Stefan Herms37,69, 
Beate Herpertz-Dahlmann34, Wolfgang Herzog86, Anke Hinney64, L. John Horwood28, 
Christopher Hübel1,13, Laura Huckins31,87, James Hudson88, Hartmut Imgart89, Hidetoshi Inoko90, 
Vladimir Janout91, Susana Jiménez-Murcia60,61, Craig Johnson92, Jennifer Jordan93,94, Antonio Julià95, 
Anders Juréus1, Gursharan Kalsi13, Deborah Kaminská96, Allan Kaplan97, Jaakko Kaprio98,99, 
Leila Karhunen100, Andreas Karwautz101, Martien Kas17,102, Walter Kaye103, James Kennedy97, 
Martin Kennedy104, Anna Keski-Rahkonen98, Kirsty Kiezebrink105, Youl-Ri Kim106, Katherine Kirk73, 
Lars Klareskog107, Kelly Klump108, Gun Peggy Knudsen109, Maria La Via9, Mikael Landén1,19, 
Janne Larsen76,110,111, Stephanie Le Hellard112,113,114, Virpi Leppä1, Robert Levitan115, Dong Li79, 
Paul Lichtenstein1, Lisa Lilenfeld116, Bochao Danae Lin17, Jolanta Lissowska117, Jurjen Luykx17, 
Pierre Magistretti118,119, Mario Maj120, Katrin Mannik57,121, Sara Marsal95, Christian Marshall122, 

NATuRE GENETICS | VOL 52 | MAy 2020 | 482–493 | www.nature.com/naturegenetics490

http://www.nature.com/naturegenetics


ArticlesNatUrE GENEtics

Nicholas Martin73, Manuel Mattheisen26,27,75,123, Morten Mattingsdal22, Sara McDevitt124,125, 
Peter McGuffin13, Sarah Medland73, Andres Metspalu57,126, Ingrid Meulenbelt127, Nadia Micali128,129, 
James Mitchell130, Karen Mitchell131, Palmiero Monteleone132, Alessio Maria Monteleone120, 
Grant Montgomery73,85,133, Preben Bo Mortensen76,110,111, Melissa Munn-Chernoff9, 
Benedetta Nacmias134, Marie Navratilova65, Claes Norring26,27, Ioanna Ntalla44, Catherine Olsen73, 
Roel Ophoff17,135, Julie O’Toole136, Leonid Padyukov107, Aarno Palotie58,99,137, Jacques Pantel30, 
Hana Papezova96, Richard Parker73, John Pearson138, Nancy Pedersen1, Liselotte Petersen76,110,111, 
Dalila Pinto87, Kirstin Purves13, Raquel Rabionet139,140,141, Anu Raevuori98, Nicolas Ramoz30, 
Ted Reichborn-Kjennerud109,142, Valdo Ricca134,143, Samuli Ripatti144, Stephan Ripke145,146,147, 
Franziska Ritschel29,148, Marion Roberts13, Alessandro Rotondo149, Dan Rujescu62,71, Filip Rybakowski150, 
Paolo Santonastaso151, André Scherag152, Stephen Scherer153, ulrike Schmidt13, Nicholas Schork154, 
Alexandra Schosser155, Jochen Seitz34, Lenka Slachtova156, P. Eline Slagboom127, 
Margarita Slof-Op ‘t Landt157,158, Agnieszka Slopien159, Sandro Sorbi134,160, Michael Strober161,162, 
Garret Stuber9,163, Patrick Sullivan1,16, Beata Świątkowska164, Jin Szatkiewicz16, Ioanna Tachmazidou31, 
Elena Tenconi45, Laura Thornton9, Alfonso Tortorella165,166, Federica Tozzi167, Janet Treasure13, 
Artemis Tsitsika168, Marta Tyszkiewicz-Nwafor150, Konstantinos Tziouvas169, 
Annemarie van Elburg18,170, Eric van Furth157,158, Tracey Wade171, Gudrun Wagner101, Esther Walton29, 
Hunna Watson9,10,11, Thomas Werge172, David Whiteman73, Elisabeth Widen99, D. Blake Woodside173,174, 
Shuyang Yao1, Zeynep Yilmaz9,16, Eleftheria Zeggini31,175, Stephanie Zerwas9 and Stephan Zipfel176

17Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands. 18Center for Eating 
Disorders Rintveld, Altrecht Mental Health Institute, Zeist, the Netherlands. 19Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. 
20Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. 21Department of Behavioral Medicine, National Institute of Mental Health, 
National Center of Neurology and Psychiatry, Tokyo, Japan. 22NORMENT KG Jebsen Centre, Division of Mental Health and Addiction, University of Oslo, 
Oslo University Hospital, Oslo, Norway. 23BioRealm, LLC, Walnut, CA, USA. 24Oregon Research Institute, Eugene, OR, USA. 25Department of Psychiatry, 
Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA. 26Department of Clinical 
Neuroscience, Karolinska Institutet, Stockholm, Sweden. 27Center for Psychiatry Research, Stockholm Health Care Services, Stockholm City Council, 
Stockholm, Sweden. 28Christchurch Health and Development Study, University of Otago, Christchurch, New Zealand. 29Division of Psychological and Social 
Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany. 30INSERM U894, Centre of 
Psychiatry and Neuroscience, Paris, France. 31Wellcome Sanger Institute, Hinxton, Cambridge, UK. 32Department of Medical Biology, School of Medicine, 
University of Split, Split, Croatia. 33The Center for Eating Disorders at Sheppard Pratt, Baltimore, MD, USA. 34Department of Child and Adolescent 
Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany. 35Klinikum Frankfurt/Oder, Frankfurt, Germany. 36Clinical 
Genetics Unit, Department of Woman and Child Health, University of Padova, Padua, Italy. 37Institute of Medical Genetics and Pathology, University 
Hospital Basel, Basel, Switzerland. 38Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, 
MI, USA. 39Department of Emergency Psychiatry and Post-Acute Care, CHRU Montpellier, University of Montpellier, Montpellier, France. 40Department of 
Psychiatry, University of Minnesota, Minneapolis, MN, USA. 41MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK. 42School of Social and 
Community Medicine, University of Bristol, Bristol, UK. 43Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, 
Hannover, Germany. 44Department of Nutrition and Dietetics, Harokopio University, Athens, Greece. 45Department of Neurosciences, University of Padova, 
Padua, Italy. 46College of Nursing, Seattle University, Seattle, WA, USA. 47Department of Psychology, Virginia Commonwealth University, Richmond, VA, 
USA. 48Department of Psychiatry, Athens University Medical School, Athens University, Athens, Greece. 49L’institut du thorax, INSERM, CNRS, UNIV 
Nantes, Nantes, France. 50L’institut du thorax, CHU Nantes, Nantes, France. 51Department of Psychiatric Genetics, Poznań University of Medical Sciences, 
Poznań, Poland. 52Barcelona Institute of Science and Technology, Barcelona, Spain. 53Universitat Pompeu Fabra, Barcelona, Spain. 54Centro de Investigación 
Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain. 55Department of Psychiatry and Behavioral Sciences, Stanford University, 
Stanford, CA, USA. 56Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Centre for 
Mental Health, Würzburg, Germany. 57Estonian Genome Center, University of Tartu, Tartu, Estonia. 58Program in Medical and Population Genetics, Broad 
Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA. 59Genomics and Disease, Bioinformatics and 
Genomics Programme, Centre for Genomic Regulation, Barcelona, Spain. 60Department of Psychiatry, University Hospital of Bellvitge –IDIBELL and 
CIBERobn, Barcelona, Spain. 61Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain. 62Department of Psychiatry 
and Psychotherapy, Ludwig-Maximilians-University (LMU), Munich, Germany. 63Schön Klinik Roseneck affiliated with the Medical Faculty of the University 
of Munich (LMU), Munich, Germany. 64Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, 
Germany. 65Department of Cancer, Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic. 66Institute of Human Genetics, 
University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany. 67Department of Genomics, Life and Brain Center, University of Bonn, 
Bonn, Germany. 68Department of Psychiatry (UPK), University of Basel, Basel, Switzerland. 69Department of Biomedicine, University of Basel, Basel, 
Switzerland. 70Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. 71Department of Psychiatry, Psychotherapy and 
Psychosomatics, Martin Luther University of Halle-Wittenberg, Halle, Germany. 721st Psychiatric Department, National and Kapodistrian University of 
Athens, Medical School, Eginition Hospital, Athens, Greece. 73QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. 74CMME 
(Groupe Hospitalier Sainte-Anne), Paris Descartes University, Paris, France. 75Department of Biomedicine, Aarhus University, Aarhus, Denmark.  

NATuRE GENETICS | VOL 52 | MAy 2020 | 482–493 | www.nature.com/naturegenetics 491

http://www.nature.com/naturegenetics


Articles NatUrE GENEtics

76The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSyCH), Aarhus, Denmark. 77Centre for Integrative Sequencing, iSEQ, Aarhus 
University, Aarhus, Denmark. 78Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark. 79Center for Applied Genomics, Children’s Hospital 
of Philadelphia, Philadelphia, PA, USA. 80Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 
81Department of Psychiatry, Weill Cornell Medical College, New york, Ny, USA. 82Department of Medical and Molecular Genetics, King’s College London, 
Guy’s Hospital, London, UK. 83Department of Adult Psychiatry, Poznań University of Medical Sciences, Poznań, Poland. 84Zorg op Orde, Leidschendam, the 
Netherlands. 85Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia. 86Department of General Internal Medicine 
and Psychosomatics, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany. 87Department of Psychiatry, and Genetics and 
Genomics Sciences, Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New york, Ny, USA. 88Biological Psychiatry Laboratory, 
McLean Hospital/Harvard Medical School, Boston, MA, USA. 89Eating Disorders Unit, Parklandklinik, Bad Wildungen, Germany. 90Department of 
Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Japan. 91Faculty of Health 
Sciences, Palacky University, Olomouc, Czech Republic. 92Eating Recovery Center, Denver, CO, USA. 93Department of Psychological Medicine, University of 
Otago, Christchurch, New Zealand. 94Canterbury District Health Board, Christchurch, New Zealand. 95Rheumatology Research Group, Vall d’Hebron 
Research Institute, Barcelona, Spain. 96Department of Psychiatry, First Faculty of Medicine, Charles University, Prague, Czech Republic. 97Center for 
Addiction and Mental Health, Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada. 98Department of 
Public Health, University of Helsinki, Helsinki, Finland. 99Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, 
Helsinki, Finland. 100Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland. 
101Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria. 102Groningen Institute for 
Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands. 103Department of Psychiatry, University of California San Diego, San 
Diego, CA, USA. 104Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand. 105Health Services Research Unit, 
University of Aberdeen, Aberdeen, UK. 106Department of Psychiatry, Seoul Paik Hospital, Inje University, Seoul, Korea. 107Rheumatology Unit, Department 
of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden. 108Department of Psychology, 
Michigan State University, East Lansing, MI, USA. 109Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway. 110National 
Centre for Register-Based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark. 111Centre for Integrated Register-based Research (CIRRAU), Aarhus 
University, Aarhus, Denmark. 112Department of Clinical Science, K.G. Jebsen Centre for Psychosis Research, Norwegian Centre for Mental Disorders 
Research (NORMENT), University of Bergen, Bergen, Norway. 113Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics 
and Molecular Medicine, Haukeland University Hospital, Bergen, Norway. 114Department of Clinical Medicine, Laboratory Building, Haukeland University 
Hospital, Bergen, Norway. 115Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada. 116American School of Professional Psychology, 
Argosy University, Northern Virginia, Arlington, VA, USA. 117Department of Cancer Epidemiology and Prevention, M Skłodowska-Curie Cancer Center - 
Oncology Center, Warsaw, Poland. 118BESE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. 119Department of 
Psychiatry, University of Lausanne-University Hospital of Lausanne (UNIL-CHUV), Lausanne, Switzerland. 120Department of Psychiatry, University of 
Campania ‘Luigi Vanvitelli’, Naples, Italy. 121Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland. 122Department of Paediatric 
Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada. 123Department of Psychiatry, Psychosomatics and Psychotherapy, 
University of Würzburg, Würzburg, Germany. 124Department of Psychiatry, University College Cork, Cork, Ireland. 125Eist Linn Adolescent Unit, 
Bessborough, Health Service Executive South, Cork, Ireland. 126Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia. 127Molecular 
Epidemiology Section (Department of Medical Statistics), Leiden University Medical Centre, Leiden, the Netherlands. 128Department of Psychiatry, Faculty 
of Medicine, University of Geneva, Geneva, Switzerland. 129Division of Child and Adolescent Psychiatry, Geneva University Hospital, Geneva, Switzerland. 
130Department of Psychiatry and Behavioral Science, University of North Dakota School of Medicine and Health Sciences, Fargo, ND, USA. 131National 
Center for PTSD, VA Boston Healthcare System, Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA. 132Department of 
Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy. 133Queensland Brain Institute, University of Queensland, 
Brisbane, Queensland, Australia. 134Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 
Florence, Italy. 135Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los 
Angeles, CA, USA. 136Kartini Clinic, Portland, OR, USA. 137Center for Human Genome Research at the Massachusetts General Hospital, Boston, MA, USA. 
138Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand. 139Saint Joan de Déu Research Institute, Saint Joan de Déu 
Barcelona Children’s Hospital, Barcelona, Spain. 140Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain. 141Department of Genetics, 
Microbiology and Statistics, University of Barcelona, Barcelona, Spain. 142Institute of Clinical Medicine, University of Oslo, Oslo, Norway. 143Department of 
Health Science, University of Florence, Florence, Italy. 144Department of Biometry, University of Helsinki, Helsinki, Finland. 145Analytic and Translational 
Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. 146Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts 
Institute of Technology and Harvard University, Cambridge, MA, USA. 147Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, 
Berlin, Germany. 148Eating Disorders Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische 
Universität Dresden, Dresden, Germany. 149Department of Psychiatry, Neurobiology, Pharmacology, and Biotechnologies, University of Pisa, Pisa, Italy. 
150Department of Psychiatry, Poznań University of Medical Sciences, Poznań, Poland. 151Department of Neurosciences, Padua Neuroscience Center, 
University of Padova, Padua, Italy. 152Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Jena, Germany. 153Department 
of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada. 154J. Craig Venter Institute (JCVI), La Jolla, CA, USA. 
155Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria. 156Department of Pediatrics and Center of Applied 
Genomics, First Faculty of Medicine, Charles University, Prague, Czech Republic. 157Center for Eating Disorders Ursula, Rivierduinen, Leiden, the 
Netherlands. 158Department of Psychiatry, Leiden University Medical Centre, Leiden, the Netherlands. 159Department of Child and Adolescent Psychiatry, 
Poznań University of Medical Sciences, Poznań, Poland. 160IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy. 161Department of Psychiatry and 
Biobehavioral Science, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA. 162David Geffen 
School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. 163Department of Cell Biology and Physiology, University of North Carolina 
at Chapel Hill, Chapel Hill, NC, USA. 164Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland. 165Department 
of Psychiatry, University of Naples SUN, Naples, Italy. 166Department of Psychiatry, University of Perugia, Perugia, Italy. 167Brain Sciences Department, 
Stremble Ventures, Limassol, Cyprus. 168Adolescent Health Unit, Second Department of Pediatrics, ‘P. & A. Kyriakou’ Children’s Hospital, University of 
Athens, Athens, Greece. 169Pediatric Intensive Care Unit, ‘P. & A. Kyriakou’ Children’s Hospital, University of Athens, Athens, Greece. 170Faculty of Social and 
Behavioral Sciences, Utrecht University, Utrecht, the Netherlands. 171School of Psychology, Flinders University, Adelaide, South Australia, Australia. 
172Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark. 173Department of Psychiatry, Faculty of Medicine, University of 
Toronto, Toronto, Ontario, Canada. 174Toronto General Hospital, Toronto, Ontario, Canada. 175Institute of Translational Genomics, Helmholtz Zentrum 
München, Neuherberg, Germany. 176Department of Internal Medicine VI, Psychosomatic Medicine and Psychotherapy, University Medical Hospital 
Tübingen, Tübingen, Germany. 

NATuRE GENETICS | VOL 52 | MAy 2020 | 482–493 | www.nature.com/naturegenetics492

http://www.nature.com/naturegenetics


ArticlesNatUrE GENEtics

International Headache Genetics Consortium

Verneri Anttila177, Ville Artto178, Andrea Carmine Belin179, Irene de Boer180, Dorret I. Boomsma181, 
Sigrid Børte182, Daniel I. Chasman183, Lynn Cherkas184, Anne Francke Christensen185, Bru Cormand186, 
Ester Cuenca-Leon177, George Davey-Smith187, Martin Dichgans188, Cornelia van Duijn189, 
Tonu Esko57, Ann Louise Esserlind190, Michel Ferrari180, Rune R. Frants180, Tobias Freilinger191, 
Nick Furlotte192, Padhraig Gormley177, Lyn Griffiths193, Eija Hamalainen194, Thomas Folkmann Hansen6, 
Marjo Hiekkala195, M. Arfan Ikram189, Andres Ingason196, Marjo-Riitta Järvelin197, Risto Kajanne194, 
Mikko Kallela178, Jaakko Kaprio98,99, Mari Kaunisto195, Lisette J. A. Kogelman6, Christian Kubisch198, 
Mitja Kurki177, Tobias Kurth199, Lenore Launer200, Terho Lehtimaki201, Davor Lessel198, Lannie Ligthart181, 
Nadia Litterman192, Arn van den Maagdenberg180, Alfons Macaya202, Rainer Malik188, 
Massimo Mangino184, George McMahon187, Bertram Muller-Myhsok203, Benjamin M. Neale177, 
Carrie Northover192, Dale R. Nyholt193, Jes Olesen190, Aarno Palotie58,99,137, Priit Palta194, 
Linda Pedersen182, Nancy Pedersen1, Danielle Posthuma181, Patricia Pozo-Rosich204, Alice Pressman205, 
Olli Raitakari206, Markus Schürks199, Celia Sintas186, Kari Stefansson196, Hreinn Stefansson196, 
Stacy Steinberg196, David Strachan207, Gisela Terwindt180, Marta Vila-Pueyo202, Maija Wessman195, 
Bendik S. Winsvold182, Huiying Zhao193 and John Anker Zwart182

177Broad Institute of MIT and Harvard, Cambridge, MA, USA. 178Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland. 
179Karolinska Institutet, Stockholm, Sweden. 180Leiden University Medical Centre, Leiden, the Netherlands. 181VU University, Amsterdam, the Netherlands. 
182Oslo University Hospital and University of Oslo, Oslo, Norway. 183Harvard Medical School, Cambridge, MA, USA. 184Department of Twin Research 
and Genetic Epidemiology, King’s College London, London, UK. 185Danish Headache Center, Copenhagen University Hospital, Copenhagen, Denmark. 
186University of Barcelona, Barcelona, Spain. 187Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK. 188Institute 
for Stroke and Dementia Research, Munich, Germany. 189Erasmus University Medical Centre, Rotterdam, the Netherlands. 190Danish Headache Center, 
Department of Neurology, Rigshospitalet, Glostrup, Denmark. 191University of Tübingen, Tübingen, Germany. 19223&Me Inc., Mountain View, CA, USA. 
193Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia. 194Institute for Molecular Medicine 
Finland (FIMM), University of Helsinki, Helsinki, Finland. 195Folkhälsan Institute of Genetics, Helsinki, Finland. 196Decode genetics Inc., Reykjavik, Iceland. 
197University of Oulu, Biocenter Oulu, Finland. 198University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 199Harvard Medical School, Boston, 
MA, USA. 200National Institute on Aging, Bethesda, MD, USA. 201School of Medicine, University of Tampere, Tampere, Finland. 202Vall d’Hebron Research 
Institute, Barcelona, Spain. 203Max Planck Institute of Psychiatry, Munich, Germany. 204Headache Research Group, Universitat Autònoma de Barcelona, 
Barcelona, Spain. 205Sutter Health, Sacramento, CA, USA. 206Department of Medicine, University of Turku, Turku, Finland. 207Population Health Research 
Institute, St George’s University of London, London, UK. 

23andMe Research Team

Michelle Agee208, Babak Alipanahi208, Adam Auton208, Robert Bell208, Katarzyna Bryc208, 
Sarah Elson208, Pierre Fontanillas208, Nicholas Furlotte208, Karl Heilbron208, David Hinds208, 
Karen Huber208, Aaron Kleinman208, Nadia Litterman208, Jennifer McCreight208, Matthew McIntyre208, 
Joanna Mountain208, Elizabeth Noblin208, Carrie Northover208, Steven Pitts208, J. Sathirapongsasuti208, 
Olga Sazonova208, Janie Shelton208, Suyash Shringarpure208, Chao Tian208, Joyce Tung208, 
Vladimir Vacic208 and Catherine Wilson208

20823andMe, Inc., Mountain View, CA, USA. 

NATuRE GENETICS | VOL 52 | MAy 2020 | 482–493 | www.nature.com/naturegenetics 493

http://www.nature.com/naturegenetics


Articles NatUrE GENEtics

Methods
GWAS results. Our goal was to use GWAS results to identify relevant tissues and 
cell types. Our primary focus was human phenotypes whose etiopathology is based 
in the CNS. We thus obtained 18 sets of GWAS summary statistics from European 
samples for brain-related complex traits. These were selected because they had at 
least one genome-wide significant association (as of 2018; for example, Parkinson’s 
disease, schizophrenia and IQ (intelligence quotient)). For comparison, we 
included GWAS summary statistics for eight diseases and traits with large sample 
sizes whose etiopathology is not rooted in the CNS (for example, type 2 diabetes). 
The selection of these conditions allowed contrasts of tissues and cells highlighted 
by our primary interest in brain phenotypes with non-brain-related traits.

The phenotypes were: schizophrenia1, educational attainment2, intelligence14, 
BMI4, bipolar disorder56, neuroticism3, MDD57, age at menarche58, autism59, 
migraine60, amyotrophic lateral sclerosis61, ADHD62, Alzheimer’s disease16, age at 
menopause63, coronary artery disease64, height4, hemoglobin A1c65, hippocampal 
volume66, inflammatory bowel disease67, intracranial volume68, stroke69, type 2 
diabetes mellitus70, type 2 diabetes adjusted for BMI70, waist–hip ratio adjusted for 
BMI71 and anorexia nervosa72.

For Parkinson’s disease, we performed an inverse-variance-weighted meta-
analysis73 using summary statistics from Nalls et al.53 (9,581 cases, 33,245 controls) 
and summary statistics from 23andMe (12,657 cases, 941,588 controls). We 
found a very high genetic correlation (rg)74 between the results from these cohorts 
(rg = 0.87, s.e. = 0.068) with little evidence of sample overlap (LDSC bivariate 
intercept = 0.0288, s.e. = 0.0066). The P values from the meta-analysis strongly 
deviated from the expected (Supplementary Fig. 8) but the trend was consistent 
with polygenicity (LDSC intercept = 1.0048, s.e. = 0.008) rather than uncontrolled 
inflation74. In this new meta-analysis, we identified 61 independent loci associated 
with Parkinson’s disease (49 reported previously17 and 12 novel; Supplementary  
Fig. 9). The 10,000 most associated SNPs from the 23andMe cohort are available  
in Supplementary Table 12.

Gene expression data. We collected publicly available single-cell RNA-seq data from 
different studies. The core dataset of our analysis is a study that sampled more than 
500,000 single cells from the entire mouse nervous system (19 regions) and identified 
39 broad categories (level 4) and 265 refined cell types (level 5)23. The 39 cell types 
expressed a median of 16,417 genes, had a median unique molecular identifier 
(UMI) total count of ~8.6 million and summed the expression of a median of 1,501 
single cells (Supplementary Table 13). The replication datasets were: a mouse study 
that sampled 690,000 single cells from 9 brain regions (frontal cortex, striatum, 
globus pallidus externus/nucleus basalis, thalamus, hippocampus, posterior cortex, 
entopeduncular nucleus/subthalamic nucleus, substantia nigra/ventral tegmental 
area and cerebellum) and identified 565 cell types34 (note that we averaged the UMI 
counts by broad categories of cell type in each brain region, resulting in 88 different 
cell types); our prior mouse study of ~10,000 cells from 5 different brain regions (and 
samples enriched for oligodendrocytes, dopaminergic neurons, serotonergic neurons 
and cortical parvalbuminergic interneurons) that identified 24 broad categories and 
149 refined cell types11; a study that sampled 19,550 nuclei from frozen adult human 
post-mortem hippocampus and prefrontal cortex and identified 16 cell types35; a 
study that generated 36,166 single-nuclei expression measurements (after quality 
control) from the human visual cortex, frontal cortex and cerebellum36. We also 
obtained bulk-tissue RNA-seq gene expression data from 53 tissues from the GTEx 
consortium7 (v8, median across samples).

Gene expression data processing. All datasets were processed uniformly. First we 
computed the mean expression for each gene in each cell type from the single-cell 
expression data (if this statistic was not provided by the authors). We used the 
pre-computed median expression across individuals for the GTEx dataset and 
excluded tissues that were not sampled in at least 100 individuals, non-natural 
tissues (for example, Epstein–Barr virus–transformed lymphocytes) and testis 
tissues (outlier using hierarchical clustering). We then averaged the expression of 
tissues by organ (with the exception of brain tissues) resulting in gene expression 
profiles of a total of 37 tissues. For all datasets, we filtered out any genes with 
non-unique names, genes not expressed in any cell types, non-protein-coding 
genes and, for mouse datasets, genes that had no expert-curated 1:1 orthologs 
between mice and humans (Mouse Genome Informatics, The Jackson Laboratory, 
version 11/22/2016). Gene expression was then scaled to a total of 1 million UMIs 
(or transcripts per million (TPM)) for each cell type/tissue. We then calculated 
a metric of gene expression specificity by dividing the expression of each gene in 
each cell type by the total expression of that gene in all cell types, leading to values 
ranging from 0 to 1 for each gene (0: meaning that the gene is not expressed in that 
cell type; 0.6: that 60% of the total expression of that gene is performed in that cell 
type; 1: that 100% of the expression of that gene is performed in that cell type). 
The 10% most specific genes (Supplementary Tables 14 and 15) in each tissue/cell 
type partially overlapped for related tissues/cell types, did not overlap for unrelated 
tissue/cell types and allowed us to cluster related tissues/cell types as expected 
(Supplementary Figs. 10 and 11).

MAGMA primary and conditional analyses. MAGMA (v1.06b)18 is a software for 
gene-set enrichment analysis using GWAS summary statistics. Briefly, MAGMA 

computes a gene-level association statistic by averaging P values of SNPs located 
around a gene (taking into account LD structure). The gene-level association 
statistic is then transformed to a z score. MAGMA can then be used to test whether 
a gene set is a predictor of the gene-level association statistic of the trait (z score) 
in a linear regression framework. MAGMA accounts for a number of important 
covariates such as gene size, gene density, mean sample size for tested SNPs per 
gene, the inverse of the minor allele counts per gene and the log of these metrics.

For each GWAS summary statistic, we excluded any SNPs with INFO 
score <0.6, with minor allele frequency <1% or with estimated odds ratio 
>25 or smaller than 1/25, the major histocompatibility complex region (chr6: 
25–34 Mb) for all GWAS and the APOE region (chr19: 45020859–45844508) for 
the Alzheimer’s GWAS. We set a window of 35 kilobases (kb) upstream to 10 kb 
downstream of the gene coordinates to compute gene-level association statistics 
and used the European reference panel from phase 3 of the 1000 Genomes 
Project75 as the reference population. For each trait, we then used MAGMA to 
test whether the 10% most specific gene in each tissue/cell type was associated 
with gene-level genetic association with the trait. Only genes with at least 
1 TPM or 1 UMI per million in the tested cell type were used for this analysis. 
The significance level of the different cell types was highly correlated with the 
effect size of the cell type (Supplementary Fig. 12), with values ranging between 
0.999 and 1 across the 18 brain-related traits in the Zeisel et al. dataset23. The 
significance threshold was set to a 5% false discovery rate across all tissues/cell 
types and traits within each dataset.

MAGMA can also perform conditional analyses given its linear regression 
framework. We used MAGMA to test whether cell types were associated with a 
specific trait conditioning on the gene-level genetic association of another trait  
(z score from MAGMA.out file) or to look for associations of cell types 
conditioning on the 10% most specific genes from other cell types by adding these 
variables as covariates in the model.

To test whether MAGMA was well calibrated, we randomly permuted the  
gene labels of the schizophrenia gene-level association statistic file a thousand 
times. We then looked for association between the 10% most specific genes in  
each cell type and the randomized gene-level schizophrenia association statistics. 
We observed that MAGMA was slightly conservative with less than 5% of the 
random samplings having P < 0.05 (Supplementary Fig. 13).

We also evaluated the effect of varying the window size (for the SNP to gene 
assignment step of MAGMA) on the schizophrenia cell-type association strength 
(−log10[P]). We observed strong Pearson correlations in the cell-type association 
strength (−log10[P]) across the different window sizes tested (Supplementary  
Fig. 14). Our selected window size (35 kb upstream to 10 kb downstream) had 
Pearson correlations ranging from 0.94 to 0.98 with the other window sizes, 
indicating that our results are robust to this parameter.

In a recent paper, Watanabe et al.76 introduced a different methodology to test 
for association between cell type and complex traits based on MAGMA. Their 
proposed methodology tests for a positive relationship between gene expression 
levels and gene-level genetic associations with a complex trait (using all genes). 
Their method uses the average expression of each gene in all cell types in the 
dataset as a covariate. We examined the method of Watanabe et al. in detail, and 
decided against its use for multiple reasons.

First, Watanabe et al. hypothesize that genes with higher levels of expression 
should be more associated with a trait. In extended discussions among our team 
(which includes multiple neuroscientists), we have strong reservations about the 
appropriateness and biological meaningfulness of this hypothesis; it is a strong 
requirement and is at odds with decades of neuroscience research where molecules 
expressed at low levels can have a profound biological impact. For instance, many 
cell-type-specific genes that are disease relevant are expressed at moderate levels 
(for example, Drd2 is in the 10% most specific genes in telencephalon projecting 
inhibitory neurons but in the bottom 30% of expression levels). Our method does 
not make this hypothesis.

Second, the method of Watanabe et al. corrects for the average expression of 
all cell types in a dataset. This practice is, in our view, problematic as it necessarily 
forces dependence on the composition of a scRNA-seq dataset. For instance, if 
a dataset consists mostly of neurons, this amounts to correcting for neuronal 
expression and necessarily erodes power to detect trait enrichment in neurons. 
Alternatively, if a dataset is composed mostly of non-neuronal cells, this will 
impact the detection of enrichment in non-neuronal cells.

Third, preliminary results indicate that the method of Watanabe et al. is 
sensitive to scaling. As different cell types express different numbers of genes, 
scaling to the same total read counts affects the average gene expression across 
cell types (which they use as a covariate), leading to different results with different 
choices of scaling factors (for example, scaling to 10,000 versus 1 million reads). 
Our method is not liable to this issue.

LD score regression analysis. We used partitioned LD score regression19 to test 
whether the 10% most specific genes of each cell type (based on our specificity 
metric described above) were enriched in heritability for the diverse traits. Only 
genes with at least 1 TPM or 1 UMI per million in the tested cell type were used 
for this analysis. To capture most regulatory elements that could contribute to 
the effect of the region on the trait, we extended the gene coordinates by 100 kb 
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taking age and sex as covariates. The Lesnick dataset37 was obtained from GEO 
(accession code GSE7621). Data were processed as for the Moran dataset: 
however, age was not available to use as a covariate. The Disjkstra dataset41 was 
obtained from GEO (accession code GSE49036) and processed as above: the sex 
and RNA integrity number values were used as covariates. As the transcriptome 
datasets measured gene expression in the substantia nigra, we kept only cell 
types that are present in the substantia nigra or ventral midbrain for our EWCE10 
analysis. We computed a new specificity matrix based on the substantia nigra or 
ventral midbrain cells from the Zeisel dataset (level 5) using EWCE10. The EWCE 
analysis was performed on the 500 most upregulated or downregulated genes 
using 10,000 bootstrapping replicates.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All single-cell expression data are publicly available. Most summary statistics 
used in this study are publicly available. The migraine GWAS60 can be obtained 
by contacting the authors of that study. The full Parkinson’s disease summary 
statistics from 23andMe can be obtained under an agreement that protects the 
privacy of 23andMe research participants (https://research.23andme.com/
collaborate/#publication). The 10,000 most associated SNPs from the 23andMe 
cohort are available in Supplementary Table 12.

Code availability
The code used to generate these results is available at https://github.com/jbryois/
scRNA_disease. An R package for performing cell-type enrichments using MAGMA 
is also available from https://github.com/NathanSkene/MAGMA_Celltyping.
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upstream and by 100 kb downstream of each gene as previously12. SNPs located  
in 100-kb regions surrounding the 10% most specific genes in each cell type  
were added to the baseline model (consisting of 53 different annotations) 
independently for each cell type (1 file for each cell type). We then selected the 
coefficient z-score P value as a measure of the association of the cell type with the 
traits. The significance threshold was set to a 5% false discovery rate across all 
tissues/cell types and traits within each dataset. All plots show the mean −log10[P] 
of partitioned LDscore regression and MAGMA. All results for MAGMA or LDSC 
are available in supplementary data files (Supplementary Tables 1, 2 and 5–9).

We evaluated the effect of varying the window size and varying the percentage 
of most specific genes on the schizophrenia cell-type association strength  
(−log10[P]). We observed strong Pearson correlations in the cell-type association 
strength (−log10[P]) across the different percentages and window sizes tested 
(Supplementary Fig. 15). Our selected window size (100 kb upstream to 100 kb 
downstream, 10% most specific genes) had Pearson correlations ranging from  
0.96 to 1 with the other window sizes and percentages, indicating that our results 
are robust to these parameters.

MAGMA versus LDSC ranking. To test whether the cell-type rankings obtained 
using MAGMA and LDSC in the Zeisel et al. dataset23 were similar, we computed 
the Spearman rank correlation of the cell-type association strength (−log10[P]) 
between the two methods for each complex trait. The Spearman rank correlation 
was strongly correlated with λGC (a measure of the deviation of the GWAS test 
statistics from the expected; Spearman correlation = 0.89; Supplementary Fig. 16)  
and with the average number of cell types below our stringent significance 
threshold (Spearman correlation = 0.92), indicating that the overall ranking of the 
cell types is very similar between the two methods, provided that the GWAS is 
well powered (Supplementary Fig. 17). In addition, we found that λGC was strongly 
correlated with the strength of association of the top tissue (−log10[P]; Spearman 
correlation = 0.88; Supplementary Fig. 18), as well as with the effect size (beta) 
of the top tissue (Spearman correlation = 0.9), indicating that the associations 
between cell type and trait are stronger for well-powered GWASs. The significance 
level (−log10[P]) was also strongly correlated with the effect size (Spearman 
correlation = 0.996; Supplementary Fig. 18) for the top cell type of each trait.

Dendritic depletion analysis. This analysis was performed as previously 
described11. In brief, all datasets were reduced to a set of six common cell types: 
pyramidal neurons, interneurons, astrocytes, microglia and oligodendrocyte 
precursors. Specificity was recalculated using only these six cell types. Comparisons 
were then made between pairs of datasets (denoted in the graph with the format 
‘X versus Y’). The difference in specificity for a set of dendrite-enriched genes is 
calculated between the datasets. Differences in specificity are also calculated for 
random sets of genes selected from the background gene set. The probability and 
z score for the difference in specificity for the dendritic genes is thus estimated. 
Dendritically enriched transcripts were obtained from Supplementary Table 10 
of Cajigas et al.77. For the KI dataset11, we used S1 pyramidal neurons. For the 
Zeisel 2018 dataset23, we used all ACTE* cells as astrocytes, TEGLU* as pyramidal 
neurons, TEINH* as interneurons, OPC as oligodendrocyte precursors and MGL* 
as microglia. For the Saunders dataset34, we used all Neuron.Slc17a7 cell types from 
FC, HC or PC as pyramidal neurons; all Neuron.Gad1Gad2 cell types from FC, 
HC or PC as interneurons; Polydendrocye as OPCs; Astrocyte as astrocytes, and 
Microglia as microglia. The Lake datasets both came from a single publication36 
that had data from the frontal cortex, visual cortex and cerebellum. The cerebellum 
data were not used here. Data from frontal and visual cortices were analyzed 
separately. All other datasets were used as described in our previous publication11. 
The code and data for this analysis are available as an R package (see ‘Code 
availability’ below).

GO term enrichment. We tested whether genes that were highly specific to a 
trait-associated cell type (top 20% in a given cell type) and highly associated with 
the genetics of the traits (top 10% MAGMA gene-level genetic association) were 
enriched in biological functions using the topGO R package78. As background, we 
used genes that were highly specific to the cell type (top 20%) or highly associated 
with the trait (top 10% MAGMA gene-level genetic association).

Parkinson’s disease rare variant enrichments. We searched the literature for genes 
associated with parkinsonism on the basis of rare and familial mutations. We found 
66 genes (listed in Supplementary Table 10). We used linear regression to test 
whether the z-scaled specificity metrics (per cell type) of the 66 genes were greater 
than 0 in the different cell types.

Parkinson’s disease post-mortem transcriptomes. The Moran dataset38 was 
obtained from GEO (accession code GSE8397). Processing of the U133a and 
U133b Cel files was performed separately. The data were read in using the 
ReadAffy function from the R affy package79; then robust multi-array averaging 
was applied. The U133a and U133b array expression data were merged after 
applying robust multi-array averaging. Probe annotation and mapping to HUGO 
Gene Nomenclature Committee symbols were performed using the biomaRt 
R package80. Differential expression analysis was performed using limma81 
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Extended Data Fig. 1 | Enrichment of immune genes in GTEx tissues. Enrichment pvalues of genes belonging to the GO term ‘Immune System Process’ in 
the 10% most specific genes in each tissue. The one-sided pvalues were computed using linear regression, testing whether the average specificity metric 
of the gene set was higher than 0 (z-scaled specificity metrics per tissue). The GO term was selected because it is the most associated with inflammatory 
bowel disease using MAGMA.
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Extended Data Fig. 2 | Associations of brain related traits with cell types from the entire mouse nervous system. Associations of the top 15 most 
associated cell types are shown. The mean strength of association (-log10P) of MAGMA and LDSC is shown and the bar color indicates whether the cell 
type is significantly associated with both methods, one method or none (significance threshold: 5% false discovery rate).
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Extended Data Fig. 3 | Correlation in cell type associations across traits. The Spearman rank correlations between the cell types associations across 
traits (-log10P) are shown. SCZ (schizophrenia), EDU (educational attainment), INT (intelligence), BMI (body mass index), BIP (bipolar disorder), NEU 
(neuroticism), PAR (Parkinson’s disease), MDD (Major depressive disorder), MEN (age at menarche), ICV (intracranial volume), ASD (autism spectrum 
disorder), STR (stroke), AN (anorexia nervosa), MIG (migraine), ALS (amyotrophic lateral sclerosis), ADHD (attention deficit hyperactivity disorder), ALZ 
(Alzheimer’s disease), HIP (hippocampal volume).
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Extended Data Fig. 4 | Associations of brain related traits with neurons from the central nervous system. Associations of the 15 most associated 
neurons from the central nervous system (CNS) are shown. The specificity metrics were computed only using neurons from the CNS. The mean strength 
of association (-log10P) of MAGMA and LDSC is shown and the bar color indicates whether the cell type is significantly associated with both methods, one 
method or none (significance threshold: 5% false discovery rate).
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Extended Data Fig. 5 | Associations of cell types with schizophrenia/cognitive traits conditioning on gene-level genetic association of cognitive traits/
schizophrenia. MAGMA association strength for each cell type before and after conditioning on gene-level genetic association for another trait. The black 
bar represents the significance threshold (5% false discovery rate). SCZ (schizophrenia), INT (intelligence), EDU (educational attainment).
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Extended Data Fig. 6 | Replication of cell type—trait associations in 88 cell types from 9 different brain regions. The mean strength of association 
(-log10P) of MAGMA and LDSC is shown for the 15 top cell types for each trait. The bar color indicates whether the cell type is significantly associated with 
both methods, one method or none (significance threshold: 5% false discovery rate).
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Extended Data Fig. 7 | Correlation in cell type associations across traits in a replication data set (88 cell types, 9 brain regions). Spearman rank 
correlations for cell types associations (-log10P) across traits are shown. SCZ (schizophrenia), EDU (educational attainment), INT (intelligence), BMI 
(body mass index), BIP (bipolar disorder), NEU (neuroticism), PAR (Parkinson’s disease), MDD (Major depressive disorder), MEN (age at menarche), ICV 
(intracranial volume), ASD (autism spectrum disorder), STR (stroke), AN (anorexia nervosa), MIG (migraine), ALS (amyotrophic lateral sclerosis), ADHD 
(attention deficit hyperactivity disorder), ALZ (Alzheimer’s disease), HIP (hippocampal volume).
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Extended Data Fig. 8 | Associations of brain related traits with neurons from 9 different brain regions. Trait—neuron association are shown for neurons 
of the 9 different brain regions. The specificity metrics were computed only using neurons. The mean strength of association (-log10P) of MAGMA and 
LDSC is shown and the bar color indicates whether the cell type is significantly associated with both methods, one method or none (significance threshold: 
5% false discovery rate).
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Extended Data Fig. 9 | Top associated cell types with brain related traits among 24 cell types from 5 different brain regions. The mean strength of 
association (-log10P) of MAGMA and LDSC is shown for the 15 top cell types for each trait. The bar color indicates whether the cell type is significantly 
associated with both methods, one method or none (significance threshold: 5% false discovery rate).

NATuRE GENETICS | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


Articles NatUrE GENEtics

Extended Data Fig. 10 | Top associated neurons with brain related traits among 16 neurons from 5 different brain regions. The specificity metrics were 
computed only using neurons. The mean strength of association (-log10P) of MAGMA and LDSC is shown for the top 15 cell types for each trait. The bar 
color indicates whether the cell type is significantly associated with both methods, one method or none (significance threshold= 5% false discovery rate).
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