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Supplementary Figure 1. tSNE plot of three cell types shared between brain regions from the Kl
superset. The plots show clustering across regions. Microglia, endothelial cells, and vascular smooth
muscle cells were selected on the basis that there is little prior expectation for them to have regional
differences in expression. We found that embryonic midbrain cells cluster separately as expected as
these cells were obtained from embryonic tissue whereas all other samples were from adolescent mice.
The cells from the other datasets were largely overlapping confirming that little to no batch effects
exist in the data.
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Supplementary Figure 2. Pearson correlation of the binned measure of cell type-specific expression (S,
defined in Online Methods) for mouse brain cell types in the Kl level 1 dataset. To illustrate the overall
structure of mouse brain scRNAseq dataset, we show a heat map and clustering of the brain cell types
identified in the KI Level 1 data. The major divisions are embryonic/progenitor cells (upper left), support
cells (middle; e.g., oligodendrocytes and microglia), and mature cells (lower right). The major division
of the mature cells include pyramidal cells/medium spiny neurons, interneurons, and “specialty”
neurons (i.e., dopaminergic, GABAergic, and glutamatergic).
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Supplementary Figure 3. MAGMA enrichment of CLOZUK schizophrenia GWA results in relation to
human tissue-specific gene expression (from GTEXx). Brain and pituitary are most associated, but there
are significant associations with multiple non-brain tissues), and tissues not believed to be etiologically
involved in schizophrenia (colon, heart, uterus). Black line shows Bonferroni correction.
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Supplementary Figure 4. LDSC schizophrenia (CLOZUK) enrichment values in each specificity decile for
each of the Kl level 1 cell types. Error bars indicate 95% confidence intervals. The rightmost point and
its confidence intervals are marked in red as this is the decile used for reported LDSC p-values
throughout this paper (rather than the p-value of the slope used for reporting MAGMA p-values). The
leftmost point (marked 'N') represents all SNPs which map onto genes not expressed in MSNs. Blue line
slows the linear regression slope fitted to the enrichment values. The grey boxing around the blue
regression line depict the confidence intervals of the regression line.
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Supplementary Figure 5. MAGMA schizophrenia (CLOZUK) gene level model fit for each Kl level 1 cell
type. The Y-axis (residuals) was obtained by regressing the gene length, gene density and their logs
from the gene-level z-score obtained from MAGMA using the CLOZUK schizophrenia GWAS. Negative
residuals indicate that genes are less associated with schizophrenia, while positive residuals indicate
that genes are more associated with schizophrenia. The x-axis shows the 41 binned tissue specificity
measures (each bin represent a 2.5% quantile of the distribution of proportions in the cell type). The
colored line shows the best non-linear fit to the data using a generalized additive model with its 95%
confidence interval. The black line represents the linear regression of the residuals by the binned
proportions.
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Supplementary Figure 6. Association between Kl Level 2 brain cell types and schizophrenia. Cell types
are ranked by the minimum average rank of LDSC and MAGMA (minimum average P-values for cell
types with equal average rank). The black line represents the Bonferroni significance threshold.
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Supplementary Figure 7. The MAGMA approach is conservative. Number of associations with P <0.05

after randomly permuting the gene label of the gene level association statistics a thousand times using

the MAGMA approach. The black line represents the number of results expected by chance at P<0.05

for 1000 permutations (50). We observed two times fewer significant results than expected by chance

using MAGMA v1.04 indicating that MAGMA is conservative.
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Supplementary Figure 8. Cell type schizophrenia association based on differential expression analysis.
The top 10% most upregulated genes in each cell types with respect to the other 23 cell types were
tested for association with schizophrenia using LDSC. The black bar represents the Bonferroni
significance threshold [ =0.05/((24+149)*8) |. Results are similar to our approach based on specificity
measures except that interneurons are not significant using the differential expression approach.
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Supplementary Figure 9. Testing cell type specificity for schizophrenia and other GWA studies. Heat
map representing the —log10(P-value) of the difference in MAGMA regression coefficient between
CLOZUK and seven other traits for each cell type (height and six brain-related studies). The red box
represent Bonferroni significant results [ =0.05/(24*7) ]. No cell types were differently associated
between CLOZUK and the previous schizophrenia GWA (SCZ2).
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Supplementary Figure 10. Confirmation of enrichment of common variant CLOZUK schizophrenia GWA
results from the KI mouse data in independent mouse brain studies. The Kl Level 1 findings connect the
CLOZUK schizophrenia results to hippocampal CA1 pyramidal neurons, cortical pyramidal neurons,
cortical interneurons, and medium spiny neurons. (A) snRNAseq from mouse hippocampus ** showing
enrichment of hippocampal CA1 pyramidal cells. (B) scRNAseq from mouse cortex ° demonstrating
enrichment of cortical pyramidal neurons and cortical interneurons. (C) scRNAseq from mouse striatum
with enrichment of “striatal neurons”, which were predominantly medium spiny neurons . There was
also enrichment for hippocampal dentate granule cells in Figure 6a and migratory neural precursors in
striatum in Figure 6¢, but these were not included in the larger Kl dataset. (D) snRNAseq data set from
24 showing enrichment in pyramidal and dentate granule cells from hippocampus but not cortical
pyramidal or interneurons cells. This data set also show a near significant enrichment of OPCs.
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Supplementary Figure 11: Pearson correlation between specificity metrics for mouse and human
DroNc-Seq cell types. To confirm that the specificity metric for the cell types had not dramatically
diverged since the evolutionary split between human and mouse, we plotted the correlation between
cell types. The DroNc-Seq data used the same nuclei capture and sequencing methods for human and
mouse cells. While subtypes of pyramidal neurons clustered by species, all other cell types (including
subtypes of interneurons) clustered by cell type.



o 10
Q
O
P 5
N L ik
0 1.l [P — ik
B
154
o
g 104
(/|) 5.
N
o Lkl __& RN N .
> & & & Q o QS @ @ Q 2 & QO
*@'b\»@(\ 6’2’6 \3\ \§°° & &o“%@o‘(b,\o‘\%@‘\ @& o“o‘o@ \'5}@ oo@ \\\e, (\% N %‘b @ &o 0‘009}\
Q}\b@e] Q}}&ooeeo eoeva 3 & éqp e@é@}e@ % 0@ %@ S‘ e@ \ P C?\&oe Qj\(\e@@\
L <@ NI R ARARS F S
%\‘o\\o\ '\c’i@'@«\é & &QQ)Q}Qe}\d*\%\ Q¥ *& & «\’2}%@ &
T AR IR & «°° \‘Q Q‘\ Q‘ SN
Q S
$°°0éq‘7§\0°QQ°Q‘ 8 &\0 0&(}@ \\\,\'z’@@b EIK O 3
Yoo © do“@\b . \00 0@\\0 O\‘q ) &q}
RO s &
Q/@ ‘O‘\\\o & &QO & &
& X &
c‘}(\
&
oF

[ Astrocyte — Cell adhesion

[l Astrocyte — G protein receptor signaling

|1 Astrocyte — Gene transcription

[ Astrocyte - Signal Transduction

[H Astrocyte — Small GTPase mediated signaling
|1 Astrocyte — Tyrosine kinase signaling

[ Oligodendrocyte — Gene transcription
[ Oligodendrocyte - Lipid metabolism
[ Oligodendrocyte — Oxidation reduction

Supplementary Figure 12: Cell types associated with glial gene sets that had previously been shown
to be associated with schizophrenia. (A) Expert curated astrocyte specific functional gene sets. (B)
Expert curated oligodendrocyte specific functional gene sets. Enrichments were tested with EWCE.
Stars mark significance at p<0.05 after correcting for multiple testing with the Benjamini-Hochberg

method over all gene sets tested with EWCE.
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Supplementary Figure 13. Association of gene sets with schizophrenia (CLOZUK) using MAGMA.
Schizophrenia (CLOZUK) association probabilities of all the gene sets analyzed. The left column
(‘original’) shows the simple association probabilities, while the right column used MAGMA to
condition on the four significantly associated cell types (MSNs, CA1 and SS pyramidal neurons, and
interneurons). The black bar represents the Bonferroni significance threshold.



[ Dialeptic seizures

5
(o) M Epileptic spasms
§ 3 “ [ Febrile seizures
2 [ Focal seizures
i
1 1l e
pL_ -L- Emom J"JJ- —.———I—u- -i ='m || Generalized seizures

[ Status epilepticus

‘ ’\\ ('o\ E Q Q \°~’
@ ‘ .\ o° o\ 0(\ 00 00 ,\o Nd © ‘-:,0 ¥ O ©
006\ &S‘ 6\60 0° & e@“éeo‘ ?},@e@‘é‘b‘e@o‘ éa°\§\é°g‘<§°o&°@o$ & e@)‘ q}@‘@\ (}\'Z’Vé"’\} &e,“e&
L& O FFF o OO O & Q& Q& FF @S
3N '\c’e«\é\q o @ O O R & £ B S o 02 &
& & O S FF L EF e S S F & o D P
SFESFFTS < & o & & O C © b °
OGP LFE P T ¥ F e &
< S § & o® & S
RN & ¢ & 2 N &
& J & @ K &
S S
A N <&
W
\\\00
o

Supplementary Figure 14: Cell types associated with gene sets that are children of the Human
Phenotype Ontology term “Seizures”. Enrichments were tested with EWCE. Stars mark significance at
p<0.05 after correcting for multiple testing with the Benjamini-Hochberg method over all gene sets
tested with EWCE.
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Supplementary Figure 15: Cell types associated with gene sets that are children of the Human
Phenotype Ontology term “Phenotypic Abnormality”. Enrichments were tested with EWCE. Stars mark
significance at p<0.05 after correcting for multiple testing with the Benjamini-Hochberg method over
all gene sets tested with EWCE.
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Supplementary Figure 16: Cell types associated with gene sets that are children of the Human
Phenotype Ontology term “Morphological abnormality of the central nervous system”. Enrichments
were tested with EWCE. Stars mark significance at p<0.05 after correcting for multiple testing with the
Benjamini-Hochberg method over all gene sets tested with EWCE.
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Supplementary Figure 17: Cell types associated with gene sets that are children of the Human
Phenotype Ontology term “Abnormality of nervous system physiology”. Enrichments were tested with
EWCE. Stars mark significance at p<0.05 after correcting for multiple testing with the Benjamini-
Hochberg method over all gene sets tested with EWCE.
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Supplementary Figure 18: Cell types associated with gene sets that are children of the Human
Phenotype Ontology term “Abnormality of nervous system morphology”. Enrichments were tested
with EWCE. Stars mark significance at p<0.05 after correcting for multiple testing with the Benjamini-
Hochberg method over all gene sets tested with EWCE.
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Supplementary Figure 19: Cell types associated with gene sets that are associated subcellular protein
localisation. Gene lists associated with GO ID’s were obtained via the Human Protein Atlas.
Enrichments were tested with EWCE. Stars mark significance at p<0.05 after correcting for multiple
testing with the Benjamini-Hochberg method over all gene sets tested with EWCE.
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Supplementary Figure 20. Schematic of the resampling approached used for conditional cell type
enrichments shown in Figure 4a. The purpose of the resampling was to enable testing of whether the
schizophrenia enrichment detected for one cell type (here represented by cortical interneurons, INTs)
results from significant enrichment in a second cell type (e.g., medium spiny neurons, MSNs). The left
plot shows the correlation in specificity values between INTs and MSNs. Each point is a single gene.
Darker points have higher schizophrenia CLOZUK association Z-scores (from MAGMA). The right plot
shows how Z-scores are resampled within each MSN specificity decile such that while the specificity
values of each gene in MSNs and INTs remains the same and the distribution of Z-scores remain
constant relative to each MSN decile, the distribution of Z-scores is randomized relative to INTs. Yellow
boxes and arrows mark the location and Z-scores of four genes. In the left plot, the Z-scores are from
MAGMA, and the right plot shows resampled Z-scores (hence the Pvalb scores have been switched with
those of Slc10a4 as both are in the same MSN specificity decile). For the analysis shown in Figure 4a,
resampling of Z-scores is performed 10000 times over and the relative enrichment of INTs in the left
plot compared to that in the resampled right plot.
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Supplementary Figure 21. Univariate and multivariate conditional analysis using MAGMA. (A)
Association of the 4 significant cell types with CLOZUK conditioning on one of the 3 other significant
cell types. The black bar represents the Bonferroni significance threshold (0.05/12). All cell types are
conditionally independent, except Pyramidal neurons from the somatosensory cortex which are not
associated with CLOZUK when conditioning on Pyramidal neurons from the somato-sensory cortex.
Note that the converse is not true. (B) Association of the 4 significant cell types with CLOZUK
conditioning on the 3 other significant cell types. The black bar represents the Bonferroni significance
threshold (0.05/4). Medium spiny neurons remain significantly associated with CLOZUK after
conditioning on the three other cell types.



Supplementary Note

Rationale

The overall goal of this analysis was to attempt to connect human genomic findings to specific brain
cell types defined by their gene expression profiles: to what specific brain cell types do the common
variant genetic findings for schizophrenia best “fit”? Multiple studies have approached this issue 14,
but using gene expression based on aggregates of millions of cells. We also evaluated whether gene
sets previously implicated in schizophrenia mapped to similar or different brain cell types. We focused
on the KI scRNAseq data from mouse (Figure 1 and Supplemental Table 2). We did this because:

a)

b)

d)

f)

These comprise the largest dataset currently available generated using identical procedures.
As shown in Figure 1, the total cells with scRNAseq (9,970) and Level 2 cell types (149) exceed
all other studies.

The mouse data include more brain regions than in human. These regions include a better
sampling of those believed to be important in schizophrenia (e.g., currently no data from
human striatum or adult dopaminergic neurons).

Due to the use of unique molecular identifiers in the KI data, the scRNAseq data reflect
absolute counts, and are directly comparable across experiments (particularly for our goal of
evaluating enrichment).

The mouse data appear to have better signal quality. This could be due to better experimental
control or the ability to isolate whole cells (excluding distal neurites) of good quality from
mouse but only nuclei or lower quality cells from adult humans. For example, sampling 1,500-
3,000 cells in cortical mouse data sets (Kl and Tasic et al. °) allowed identification of 24 and 42
cortical neuronal subtypes. In contrast, sequencing over 3,000 human neuronal nuclei © or 466
whole neurons 7 allowed for the identification of only 16 and 7 subtypes. More types of
inhibitory interneurons (16-23) have been identified in mouse but only 8 in human despite
equal or greater sequencing depth but future work may improve the ability to discriminate
cell types using single nuclei RNA-Seq data.

Use of laboratory mice allow far greater experimental control of impactful perimortem and
postmortem events. All mice are healthy without systemic illnesses and medication-free. All
mice can be euthanized in the same way, and time from death to tissue processing is
standardized and measured in minutes rather than hours. Causes of death in human are highly
variable, and perimortem events can alter brain gene expression (e.g., systemic disease or
prolonged hypoxia). Although human brain tissue can be obtained during certain
neurosurgical procedures (e.g., resection of a seizure focus in refractory epilepsy), the
individuals undergoing these procedures are atypical and subject to the effects of chronic
brain disease and medication.

As shown in Figure 3a, scRNAseq can be done in mouse brain cells but is far harder in human
brain cells. scRNAseq provides better coverage of brain cell transcriptomes and avoids loss of
transcripts important for schizophrenia.

Thus, from a practical perspective, more cell types have been identified in mouse, and the Kl data
comprise over half of currently available brain scRNAseq data. Key findings in the KI dataset were
verified in other human and mouse datasets. We also applied independent statistical methods
predicated on different assumptions and algorithms to evaluate the relation of brain cell types to GWA
results for schizophrenia.

Limitations



Nonetheless, despite our use of multiple statistical methods and efforts to identify and resolve any
spurious explanations for our findings, our work has to be considered in light of inevitable limitations.
First, although we used the largest available schizophrenia GWA dataset, we still have an incomplete
portrait of the genetic architecture of schizophrenia. This is an active area, and more informative
results are sure to emerge in the next few years. Second, although the Kl scRNAseq data cover a broad
range of brain regions thought to be relevant to the neurobiology of schizophrenia, extensive coverage
of cortical and striatal development is lacking at present (gestation, early postnatal, or adolescence).

Third, we focus principally on mouse scRNAseq data. Our reasons for doing so are explained above. A
key part of our approach is replication of the main findings in human datasets. However, we would be
remiss not to consider the comparability of mouse and human. Mice are widely used for modeling
brain diseases. There are relatively high degrees of mouse-human conservation in genes expressed in
brain. The most extensive study compared RNA-seq data from six organs (cortex, cerebellum, heart,
kidney, liver, and testis) across ten species (human, chimpanzee, bonobo, gorilla, orangutan,
macaque, mouse, opossum, platypus and chicken) 8. Using principal components analysis, the largest
amount of variation (PCs 1 and 2) explained differences between organs rather than between species.
Gene expression in brain (including several key gene expression modules) was more conserved
between species than any of the other tissues. These observations were broadly replicated using
scRNAseq in ventral midbrain °. Furthermore, 75% of genes show similar laminar patterning in mouse
and human cortex °.

Fourth, whatever the general similarities, there are certainly differences between mouse and human
brain®, and there are even cortical cells present in human but not mouse (e.g., spindle or von Economo
neurons). We therefore evaluated mouse-human gene conservation. Using empirical measures of
gene conservation (Ensembl, URLs), we determined that the mouse genes in the Kl Level 1 and Level
2 gene expression dataset that we analyzed were 89% identical (median, interquartile range 80-95%)
to human 1:1 homologues. For these genes, the ratio of non-synonymous to synonymous amino acid
changes (dN/dS) was 0.094 (median, interquartile range 0.045-0.173): mutations in these genes are
thus subject to strong negative selection (dN/dS = 1 is consistent with neutrality). Pathway analysis of
the 400 genes with the largest dN/dS values revealed enrichments in genes involved in defense
responses, inflammation, cytokines, and immunoglobulin production. The 400 genes with extremely
low dN/dS ratios were involved in neuron differentiation, RNA splicing, and mRNA processing.

In conclusion, for most brain cell types, use of KI mouse scRNAseq data was defensible and reasonable
(particularly given verification in human transcriptomic data). The major caution is with respect to
cells with prominent immune function (e.g., microglia). (See also the section on mouse-human gene
mapping below.)

We can implicate a particular cell type (i.e., present consistent positive evidence) but it is premature
to exclude cell types for which we do not have data, or those with dissimilar function or under selection
pressure between mouse and human.

Single-cell transcriptome data

Supplemental Table 2 shows the scRNAseq or snRNAseq data from mouse or human brain. These
include published and unpublished data (using the same protocols as in peer-reviewed papers). To the
best of our knowledge, these comprise all or nearly all of the available adult brain single nuclei or
scRNAseq data.

We focused on a superset of brain scRNAseq data from Kl generated using identical methods from the
same labs with the use of unique molecularidentifiers that allow for direct comparison of transcription



data across regions (see above for full rationale). The KI mouse superset of 9,970 cells and 149 Level
2 cell types is more extensive than any other single nuclei or scRNAseq dataset now available, and
includes most brain regions thought to be salient to schizophrenia. The papers contain full method
details. Briefly, the KI scRNAseq data were generated using the same methods (Fluidigm C1 with
Illumina 50 bp single end sequencing) with the use of unique molecular identifiers to enable absolute
molecular counts. In the first paper describing the method it was estimated that an average of 1.2
million mapped reads per cells was sequenced (28). Level 1 and 2 clustering was done using the
BACKSPIN algorithm 1. All cells lacking annotations were excluded. For non-neuronal populations,
except cells from oligodendrocyte lineage and VLMCs, we only included cells from Zeisel et al 2015 in
the Kl data set. The level 2 CA1 pyramidal cell contain a small number of cells from CA2 and Subiculum
resulting from dissection inaccuracies, these are represented as separate level 2 classes. The resulting
data have been shown to be insensitive to linear variation in total reads per cell. If a gene was detected
in one dataset and not in another, it was considered to have zero reads in all cells where it had not
been detected.

To confirm that no batch effects exist across Kl regional subdatasets that may influence the merged
results, we plotted three cell types using tSNE which were expected to show little real regional
variation: endothelial cells, vascular smooth muscle cells and microglia (Supplemental Figure 2). The
tSNE plots were generated in R using the Rtsne and Scater packages using 500 of the most variable
features. Only the embryonic midbrain cells clustered separately, as was expected due to the
difference between the embryonic and adult brain.

We include unpublished data generated by the Hjerling-Leffler and Linnarsson labs at Kl using the
same methods as in Zeisel et al. 1. Cells were isolated from dorsolateral striatum from p21-p30
transgenic mice, the same age span as in Zeisel et al. 11. Coverage of rare interneuron populations was
enhanced by FACS sorting cells from either SHT3a-EGFP or a Lhx6cre::TdTomato line. The cortical
parvalbuminergic cells and striatal neurons were captured and prepared for sequencing as described
in Zeisel et al. %,

The largest human dataset is an unpublished data set from the Allen Institute for Brain Science which
consisted of 4401 cells from middle temporal gyrus of 3 post-mortem brains from healthy, adult
subjects. Nuclei were dissociated from cortical tissue and FACS isolated based on NeuN staining,
resulting in approximately 90% NeuN+ and 10% NeuN- nuclei. Single nucleus cDNA libraries were
generated using SMARTerV4 and Nextera XT and sequenced to a depth of approximately 2 million
reads per sample. Reads were aligned with Bowtie and gene expression quantified with RSEM plus
intronic reads and normalized to counts per million. Clustering was performed with iterative PCA and
tSNE with cluster robustness assessed with 100 bootstrap replicates. Level 1 clusters were
characterized based on expression of known marker genes and included two broad classes of neurons
— GABAergic interneurons and glutamatergic projection neurons — and 4 non-neuronal types:
astrocytes, oligodendrocyte precursors, mature oligodendrocytes, and microglia.

Technical issues

The process of procuring cells for scRNAseq entails dissecting the tissue and preparing a single-cell
suspension. This entails severing cellular processes such as dendrites and axons. It is probably safe to
assume that different cell types are differentially sensitive to this drastic process. Accordingly, in early
studies certain cell types, although present in the data sets, was clearly underrepresented —most likely
due to lower rates of survival. Although the cell procurement methods have improved the field, in
general, do not rely on scRNASeq data to make statements on relative abundance between cell types.
Such statements should ultimately be done in tissue samples and this is one of the major reasons that
multiplexed in situ hybridization techniques is a fast-growing field.



When sampling tissue for scRNASeq there are two general approaches used to increase the chances
to sample underrepresented or low abundant cell types at enough high numbers: 1) if one has prior
knowledge of what cell type is underrepresented these can be enriched using FACS isolation of
genetically labeled cells, 2) to massively increase the sampling rate of cells (usually also entails
decreasing the sequencing depth of each cell). ScRNAseq is a fast-moving field and future datasets will
help fine-tune our knowledge on cell types but with the data sets used in this study we have captured
a majority of cellular complexity. Even with in situ techniques emerging, the question “are we missing
any cell types” cannot be answered in an absolute fashion —we can only estimate what are the
minimum size of populations we can detect. For well characterized brain areas like cortex and
hippocampus we can make these estimates more accurately but with structures that has high cellular
complexity and is not so well characterized (i.e. hypothalamus) the risk is considerably higher that we
are missing some populations.

We are not aware of how these kind of effects affects snRNAseq data but presumably the problem
should be much less pronounced since as a first step nuclei are isolated by killing all cells
simultaneously. The main scRNAseq data sets used in this paper (KI data set) have relied mainly on
enrichment of low abundant/low surviving cells via FACS isolation in some of the sub-sets (e.g. cortex,
hippocampus and striatum). This is also the case for the Tasic data set. The other main data sets used
(AIBS and DroNc-seq) are snRNAseq data sets.

Evaluation of genomic biases

The algorithms used by LDSC and MAGMA both account for the non-independence introduced by
linkage disequilibrium (LD), or the tendency for genomic findings to “cluster” due to strong
intercorrelations. LD block size (discrete regions of high correlations between nearby genetic markers)
average 15-20 kb in samples of European ancestry, but there are nearly 100 genomic regions with high
LD extending over 1 mb (the extended MHC region on human chromosome 6 is the largest and has
very high LD over 8 mb). Gene size is an additional consideration for MAGMA (accounting for gene
size is a component of the algorithm), particularly as brain-expressed genes are considerably larger
than genes not expressed in brain (mean of 80.7 kb vs 31.2 kb). The algorithms used by LDSC and
MAGMA have been well-tested, and are widely used. However, it is conceivable that certain edge
cases could defeat algorithms that work well for the vast majority of scenarios. An example might be
if a large fraction of the genes that influence a brain cell type were located in a region of very high LD.
First, brain-expressed genes were slightly more likely to be in a large LD block (299" percentile in size
across the genome), 12.4% vs 10.2%. In discussion with the developers of LDSC and MAGMA, this
should not yield an insuperable bias. Second, by counting the numbers of genes and brain-expressed
genes per mb, we found that brain-expressed genes in the human genome were reasonably evenly
scattered across the genome (R? 0.85), and only 10 of 2,534 1-mb intervals were outliers. Most of
these were gene clusters with fewer than expected brain-expressed genes (e.g., a late cornified
envelope gene cluster on chr1:152-153 mb, an olfactory gene cluster on chr1:248-249 mb, and a
keratin gene cluster on chr17:39-40 mb). Third, in a similar manner, we evaluated the locations of the
human 1:1 mapped genes influential to the Kl Level 1 classifications and found these to be relatively
evenly scattered in the genome. Thus, these potential genomic biases did not appear to present
difficulties for our key analyses (that used two independent methods in any event).

Mouse-to-human gene mapping
Because most of the scRNAseq data were from mouse brain and the schizophrenia genomic results

are from human, it was necessary to map 1:1 homologs between M. musculus and H. sapiens. To
accomplish this, used a best-practice approach in consultation with a senior mouse geneticist (UNC



Prof Fernando Pardo-Manuel de Villena de L'Epine, personal communication). We used the expert
curated human-mouse homolog list (Mouse Genome Informatics, Jackson Laboratory, URLs, version
of 11/22/2016). Only genes with a high-confidence, 1:1 mapping were retained. A large fraction of
non-matches are reasonable given evolutionary differences between human and mouse (e.g., the
distinctiveness of olfactory or volmeronasal receptor genes given the greater importance of smell in
mouse). Nonetheless, we evaluated the quality and coherence of the mapping.

e The mouse brain cell expression levels for the Kl Level 1 cell types were similar for mouse
genes with and without a 1:1 human homologue. This is inconsistent with a strong bias due
to the success/failure of identifying a human homologue.

e A high fraction (93%) of the KI genes detected in mouse brain samples that mapped to a
human gene were expressed in human brain (CommonMind DLPFC RNA-seq) or 27 samples
with RNA-seq from the Sullivan lab (unpublished, DLPFC from 9 schizophrenia cases and 9
controls plus 9 fetal frontal cortex samples). The ones that did not (7%) were expressed at
considerably lower levels in mouse brain or in cell types not prevalent in cortex.

e Of genes with evidence of expression in human brain (via frontal cortex RNA-seq as noted
above), human homologues of KI mouse genes accounted for 93.2% of intellectual disability
genes, 93.7% of developmental delay genes, 93.8% of genes with a CHD8 binding site, 94.4%
of post-synaptic genes, 95.0% of proteins involved in the ciliary proteome, 95.1% of genes
intolerant to loss-of-function variation (EXAC pLI > 0.9), 95.6% of pre-synaptic genes, and
96.4% of FMRP interactors.

We evaluated the mapping carefully and the results above suggest the coherence of the mouse-
human mapping. All key findings from the KI mouse scRNAseq data were evaluated in other mouse
and human brain scRNAseq datasets.

Calculation of cell type expression specificity

We denote this specificity metric as s, . for gene g and cell type c. Values of s, . were calculated for
the brain scRNAseq datasets in Supplemental Table 2.

Each dataset contains scRNAseq results from w cells associated with k cell types. Each of the k cell
types is associated with a numerical index from the set {1,.., k}. The cell type annotations for cell i
are stored using a numerical index in L, such that ;o5=5 indicates that the 1005'" cell is of the 5 cell
type. We denote N, as the number of cells from the cell-type indexed by c. The expression proportion
for gene g and cell type c (where 7 ; is the expression of gene g in cell i) is given by:

rg,i' li =cC

S XL, F(g.i.c)/Ng
0, li *C

9.c = TE_ SV, F(gir)/Ny)

F(g,i,c) ={

This metric for cell specificity is closely related to other measures 2. For instance, the maximum value
of s per gene yields similar results to 1 such that smax > 0.5 is equivalent to Tt > 0.94.

The size of a cell is generally correlated with the amount of mMRNA detected upon isolation. This is
reflected in the “Total Average Molecules” column of Supplemental Table 3 which is representative
of the real amount of mRNA detected in the cells. The values used in the Kl data set are from Unique
Molecular Identifiers (UMls; each individual mRNA molecule is uniquely barcoded upon detection and
an absolute number thus can be calculated even after PCR amplification). In order to not ignore
meaningful biologically differences we did not scale the expression levels between cell types.
However, we tested the effect of scaling gene expression to 10’000 molecules for each cell type before
calculating the specificity index and observed the same Bonferroni significant cell types in the same
order, indicating that our approach is robust to differences in the total number of molecules detected



per cell type. Perhaps we should point out that MSNs are, as the name implies, medium-sized cells
and were found to be significantly enriched in every test in spite of being the third smallest neuronal
cell type based on mRNA counts.

Choice of MAGMA window size boundaries

In regard to choice of window size/bin boundaries, MAGMA by default combines P-values of SNPs
located within gene boundaries (+0 kb). We decided to extend the default window size as a large
fraction of trait-associated SNPs are located just outside genes in regions likely to regulate gene
expression 3. One of the authors of MAGMA (Christiaan de Leeuw) advised us to expand the window
size by a limited amount in order to keep the ability to distinguish the genetic contribution of genes
located in close proximity. Therefore, we set expanded gene boundaries to 10 kb upstream—1.5 kb
downstream. We evaluated the effect of different choices of bin size including 35 kb upstream—10 kb
downstream (as often used by the PGC %), 150 kb upstream—10 kb downstream, and 150 kb
upstream—150 kb downstream (GTEx !* Supplemental Figure 9 from). The results were not
substantially altered by window size as the ranking of cell types (Kl level 1) were very similar for these
different window sizes; if anything ours was a slightly conservative choice.
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Supplementary Tables

Report Genomic data Convergence Notable pathway/gene sets

Schizophrenia 16 dURV, WES Neurons (not astrocytes or oligodendrocytes), excitatory
(RVAS) and inhibitory neurons similar
Genes intolerant to loss-of-function variation
Genes whose mRNAs bind to FMRP or CELF4
Genes with bindings sites for RBFOX1, 2, or 3
Synaptic genes
Post-synaptic density
Activity-related cytoskeleton complex
NMDA receptor components
Genes with miR-137 binding sites
Genes intolerant to loss-of-function variation
Genes whose mRNAs bind to FMRP
Genes with bindings sites for RBFOX1, 2, or 3
Genes with bindings sites for CHD8
Activity-related cytoskeleton complex
g NMDA receptor components
Overlap with autism genes
Overlap with developmental delay genes
Genes intolerant to loss-of-function variation
b Genes whose mRNAs bind to FMRP
Serotonin 2C receptor complex
Calcium ion import
Membrane depolarization during action potential
d Synaptic transmission
Abnormal behavior
Abnormal nervous system electrophysiology
Abnormal long term potentiation
Synaptic genes
Post-synaptic density
Activity-related cytoskeleton complex
NMDA receptor components
Genes with miR-137 binding sites

Schizophrenia 17 dURV, WES
(RVAS)

0O T O 0 +~MD® QO 0 T o

—h

Q

Schizophrenia 18 GWA

Schizophrenia * GWA

>0 -~ 0 Q

Schizophrenia19 GWA Oligodendrocyte — gene transcription, lipid metabolism, and
oxidation reduction
Astrocyte — cell adhesion, G protein receptor signaling, gene
transcription, signal transduction, small GTPase mediated
signaling, and tyrosine kinase signaling

Supplementary Table 1. Gene sets or biological pathways previously implicated in schizophrenia.
These analyses ask whether schizophrenia case/control genetic association results are “enriched” in
the genes comprising a gene set. At least 20 gene sets have been implicated, and many are implicated
by different types of genetic studies. This convergence is highly notable. However, these connect
genetic risk for schizophrenia to a highly diverse and puzzling set of genes and biological pathways.
dURV=disruptive or damaging ultra-rare variants. WES=whole exome sequencing. GWA=genome-
wide, common variant association study. RVAS=rare variant association study.



Species  Label Citation Source RNAseq tech.  Stage Region Cells L1 L2

Mouse  Gokce 20 GEO GSE82187 Single cell Adult Striatum 1208 10 10
Habib 2 GEO GSE84371 Single nuclei Adult Hippocampus 1287 11 29
Kl Unpublished = Pending Single cell Adult Cortex (Pvalb interneurons) 89 1 1
Kl u Linnarsson lab (URLs) Single cell Adult Cortex + hippocampus 1996 6 41
Kl 22 GEO GSE74672 Single cell Adult Hypothalamus 772 4 62
Kl 9 GEO GSE76381 Single cell Adult Midbrain 243 1 5
Kl 2 GEO GSE76381 Single cell Fetal Midbrain 1290 8 22
Kl 23 GEO GSE75330 Single cell Adult Oligodendrocytes 5051 3 13
Kl Unpublished = Pending Single cell Adult Striatum 529 2 6
Tasic 5 GEO GSE71585 Single cell Adult Cortex 1679 7 49
DroNc human % Broad Single Cell Portal Single nuclei Adult Cortex + Hippocampus 13313 11 22

Human  AIBS Unpublished  Pending Single nuclei Adult Cortex 4401 6 6
Darmanis g GEO GSE67835 Single nuclei Adult, fetal  Cortex 420 8 8
Lake 6 dbGaP phs000833.v3.p1  Single nuclei Adult Cortex (N=1) 3042 2 16

DroNc mouse %

Broad Single Cell Portal Single nuclei Adult Cortex + Hippocampus 14137 10 15
Supplementary Table 2. Single nuclei or scRNAseq data from mouse or human brain. Source column indicates provenance of the data (URLs). KI=Karolinska
Institutet. AIBS=Allen Institute for Brain Science. L1=number of Level 1 cell type categories. L2=number of Level 2 cell types (subdivisions of L1 types). All KI
datasets were merged into a superset; all other datasets were used separately. These data are depicted in Figure 1.



Kl Level 1 cell type Level 2 Cells Total Average

subdivisions Molecules
Hypothalamic dopaminergic neurons 4 41 14220
Serotonergic neuron 1 59 10583
Oxytocin & vasopressin expressing neurons 7 62 12156
Dopaminergic neuroblast 1 71 4902
Vascular leptomeningeal cells 1 76 3256
Embryonic dopaminergic neuron 3 93 6147
Microglia 4 98 4567
Embryonic midbrain nucleus neurons 2 105 11181
Neuronal progenitor 1 149 7172
Astrocytes / ependymal 4 159 6130
Radial glia like 3 166 7762
Medium spiny neuron 2 218 8610
Endothelial-mural 4 220 4319
Embryonic GABAergic neuron 3 221 10129
Dopaminergic neuron 5 243 10912
Cortical interneurons 16 379 15979
Pyramidal (SS) 8 290 17131
Hypothalamic glutamatergic neurons 32 305 8503
Oligodendrocyte precursor 1 308 3384
Striatal interneuron 4 311 10796
Hypothalamic GABAergic neurons 19 364 9602
Neuroblasts 8 426 6156
Pyramidal (CA1) 5 939 16066
Oligodendrocytes 11 4667 7581

Supplementary Table 3. Detail on the KI scRNAseq Level 1 and 2 dataset. There are 24 Level 1 cell type
categories and 149 Level 2 subdivisions. The median number of cells in the Level 1 categories was 218
(interquartile range 91-306), and the Level 2 subdivisions range from 1-32. The numbers of single cells
contributing to the Level 1 classification are shown. We found no relation between the number of cells
and the cell type found to “fit” schizophrenia. For example, there are large numbers of
oligodendrocytes and neuroblasts (which were not enriched for schizophrenia genomic findings), and
the number of cells for medium spiny neurons (which were associated) were at the median. Likewise,
the total average number of molecules detected in each cell type (as determined using Unique
Molecular Identifiers) does not explain the enrichments found (note that medium spiny neurons have
almost half as many molecules as hypothalamus dopaminergic neurons).
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