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Supplementary Figure 1: Tissue – trait associations for all traits. The mean strength of association 
(-log10P) of MAGMA and LDSC is shown and the bar color indicates whether the tissue is 
significantly associated with both methods, one method or none (significance threshold: 5% false 
discovery rate).



Supplementary Figure 2: GWAS signal to noise ratio (λGC) by category of GWAS trait. Boxplot of the λGC of 
the different GWAS by category of trait. λGC was estimated using LDSC for each GWAS. The box represents 
the median, upper and lower quartile, while the whiskers extend to the most extreme value up to 1.5 time the 
interquartile range. Data beyond the whiskers are called “outlying” points and are plotted individually
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Supplementary Figure 3: Number of single cells forming the oligodendrocyte cluster. Number of 
single cells per region of the mouse nervous system used to estimate the average gene expression 
of oligodendrocytes.
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Supplementary Figure 4: Conditional analysis results for brain related traits. Conditional analysis results using MAGMA are shown for up to 
the 5 most associated cell types (if at least 5 cell types were significant at a 5% false discovery rate in the original analysis. The color indicates 
if the cell type is significant at a 5% false discovery rate and the label indicates the cell type the association analysis is being conditioned on.
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Supplementary Figure 6: Single nuclei datasets are systematically depleted of dendritically enriched transcripts relative to single-cell datasets. 
Each bar represents a comparison between two datasets (X versus Y), with the bootstrapped z-scores representing the extent to which 
dendritically enriched transcripts have lower specificity for pyramidal neurons in dataset Y relative to that in dataset X. Larger z-scores indicate 
greater depletion of dendritically enriched transcripts, and red bars indicate a statistically significant depletion (P < 0.05, by bootstrapping). 
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Supplementary Figure 7: Gene expression correlation within cell type across species. Pearson correlation of gene 
expression (log2(expression) +1) between mouse and human cell types with matching names (from Habib et al. 2017).



Supplementary Figure 8: Quantile-quantile plot of Parkinson’s disease meta-analysis. Quantile-quantile plot of the 
meta-analyzed pvalues for Parkinson’s disease. The y-axis is truncated for clarity. The grey zone around the red line 
represents the 95% confidence interval for the null distribution.



Supplementary Figure 9:: Manhattan plot of Parkinson’s disease meta-analysis. The black dotted line represents the genome-wide significance threshold (5x10-8). 
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Supplementary Figure 10: Jaccard index for the top 10% most specific genes in each tissue in the GTEx dataset. 
Jaccard index were calculated between the top 10% most specific genes in each tissue from the GTEx dataset.
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Supplementary Figure 11: Jaccard index for the top 10% most specific genes in each cell type in the mouse nervous system (Zeisel et al. 2018). 
Jaccard index were calculated between the top 10% most specific genes in each cell type from the mouse nervous system (Zeisel et al. 2018).
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Supplementary Figure 12: Correlation between beta coefficient and significance level. Histograms of the spearman rank correlations 
between effect size (beta coefficient) and significance (-log10P) computed for each trait in the Zeisel dataset. The effect sizes are strongly 
correlated with the significance level of the cell type with values ranging from 0.999 to 1 using MAGMA and 0.953 to 1 with LDSC.



Supplementary Figure 13: Number of MAGMA associations with P<0.05 using permuted gene-level genetic associations. Gene labels were 
randomly permuted a thousand times for the schizophrenia MAGMA gene-level genetic associations (39 cell types * 1000 permuted 
labels=39,000 associations with permuted gene labels). The number of permutations with P < 0.05 is shown in blue. The black horizontal bar 
shows expected number of random associations with P < 0.05 (39,000*0.05=1950).
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Supplementary Figure 14: Correlation in schizophrenia cell type association strengths with different window sizes using MAGMA. Pearson correlations of the cell 
type association strength (-log10P) across different window sizes using MAGMA. The diagonal shows the distribution of the (-log10P) for each window size.
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Supplementary Figure 15: Correlation in schizophrenia cell type association strengths with different window sizes and percentages of most 
specific genes using LDSC. Pearson correlations of the cell type association strength (-log10P) across different window sizes and 
percentages of most specific genes using LDSC. The diagonal shows the distribution of the (-log10P) for the cell type associations using 
different parameters.
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Supplementary Figure 16: Correlation between λGC and similarity in cell type ordering between MAGMA and LDSC. LDSC was used to obtain λGC (a measure of the deviation of 
the GWAS statistics from the expected) for each GWAS. Spearman rank correlation was used to test for similarity in association strength (-log10P) between MAGMA and LDSC 
for each GWAS among 39 cell types from the nervous system.
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Supplementary Figure 17: Correlation between mean number of significant cell types and similarity in cell type ordering between MAGMA and LDSC. The mean number of 
cell types was obtained by taking the average of the number of cell types that were significantly associated with each trait (FDR<5%) using MAGMA and LDSC. Spearman 
rank correlation was used to test for similarity in association strength (-log10P) between MAGMA and LDSC among 39 cell types from the nervous system.
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Supplementary Figure 18: The GWAS λGC is correlated with the strength of association of the top cell type in the Zeisel dataset. Scatter plot of the λGC (median of chi-squared test 
statistics divided by expected median of the chi-squared distribution) of each GWAS vs the strength of association of the top Zeisel cell type associated with the trait (-log10(PMAGMA)). 
Spearman correlation=0.88 (A). Scatter plot of the λGC of each GWAS vs the effect size of the top Zeisel cell type associated with the trait (-log10(PMAGMA)). Spearman correlation=0.9 
(B). Scatter plot of the strength of association of the top Zeisel cell type (-log10(PMAGMA)) of each GWAS vs the effect size of the top Zeisel cell type. Spearman correlation=0.996 (C).
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Supplementary Figure 19: Genetic correlation across traits. The genetic correlation across traits were computed using LDSC. Traits are ordered based on hierarchical clustering.
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Supplementary Figure 20: Replication of cell type – trait associations in 88 cell types from 9 different brain regions. The mean strength of association (-log10P) of MAGMA and LDSC is shown and 
the bar color indicates whether the cell type is significantly associated with both methods, one method or none (significance threshold: 5% false discovery rate). SCZ (schizophrenia), EDU 
(educational attainment), INT (intelligence), BMI (body mass index), BIP (bipolar disorder), NEU (neuroticism), PAR (Parkinson’s disease), MDD (Major depressive disorder), MEN (age at 
menarche), ICV (intracranial volume), ASD (autism spectrum disorder), STR (stroke), AN (anorexia nervosa), MIG (migraine), ALS (amyotrophic lateral sclerosis), ADHD (attention deficit 
hyperactivity disorder), ALZ (Alzheimer’s disease), HIP (hippocampal volume).



Supplementary Note:  
 
Genetic correlations among complex traits 
 
We estimated the genetic correlations (!") between the 26 traits. We confirmed prior reports 1,2 
that psychiatric disorders were strongly inter-correlated (e.g., high positive correlations for 
schizophrenia, bipolar disorder, and MDD) and shared little overlap with neurological disorders 
(Supplementary Fig. 19 and Supplementary Table 4). Parkinson’s disease was genetically 
correlated with intracranial volume 3 (!"=0.29, s.e=0.05) and amyotrophic lateral sclerosis 
(ALS, !"=0.19, s.e=0.08), while ALS was negatively correlated with intelligence (!"=-0.24, 
s.e=0.06) and hippocampal volume (!"=-0.24, s.e=0.12). These results indicate that there is 
substantial genetic heterogeneity across traits, which is a necessary (but not sufficient) 
condition for trait associations with different tissues or cell types.  
 
Cell type-specific and trait-associated genes are enriched in specific biological 
functions 
 
Understanding which biological functions are dysregulated in different cell types is a key 
component of the etiology of complex traits. To obtain insights into the biological functions 
driving cell-type/trait associations, we evaluated GO term enrichment of genes that were 
specifically expressed (top 20% in a given cell type) and highly associated with a trait (top 10% 
MAGMA gene-level genetic association). Genes that were highly associated with 
schizophrenia and specific to telencephalon projecting excitatory neurons were enriched for 
GO terms related to neurogenesis, synapses, and voltage-gated channels (Supplementary 
Table 16), suggesting that these functions may be fundamental to schizophrenia. Similarly, 
genes highly associated with educational attainment, intelligence, bipolar disorder, 
neuroticism,  BMI, anorexia and MDD and highly specific to their most associated cell types 
were enriched in terms related to neurogenesis, synaptic processes and voltage-gated 
channels (Supplementary Table 16). In contrast, genes highly associated with stroke and 
specific to vascular cells were enriched in terms related to vasculature development, while 
genes highly associated with ALS and peripheral sensory neurofilament neurons were 
enriched in terms related to lysosomes.   
 
Genes highly associated with Parkinson’s disease and highly specific to cholinergic and 
monoaminergic neurons were significantly enriched in terms related to endosomes and 
synapses (Supplementary Table 16). Similarly, genes highly specific to oligodendrocytes and 
Parkinson’s disease were enriched in endosomes. These results support the hypothesis that 
the endosomal pathway plays an important role in the etiology of Parkinson’s disease 4. 
 
Taken together, we show that cell type-trait associations are driven by genes belonging to 
specific biological pathways, providing insight into the etiology of complex brain related traits. 
 
Comparison with case/control differentially expressed genes at the cell type level 
 
We compared our findings for Alzheimer’s disease (Supplementary Table 2, Fig. 4B, 
Supplementary Fig. 20) with a recent study that performed differential expression analysis at 
the cell type level between 24 Alzheimer’s cases and 24 controls 5 (prefrontal cortex, 
Brodmann area 10). We tested whether the top 500, top 1000 and top 2000 most differentially 
expressed genes (no pathology vs pathology) in six different cell types (excitatory neurons, 
inhibitory neurons, oligodendrocytes, oligodendrocytes precursor cells, astrocyte and 
microglia) were enriched in genetic associations with Alzheimer’s disease using MAGMA. 
Consistently with our results, we found that genes differentially expressed in microglia were 



the most associated with Alzheimer’s disease genetics (Supplementary Table 17), indicating 
that our approach appropriately highlight the relevant cell type at a fraction of the cost of a 
case-control single cell RNA-seq study. As performing case-control single cell RNA-seq 
studies in the entire nervous system is currently cost prohibitive, the consistency of our results 
with the case-control study of Alzheimer’s disease suggests that our results could be leveraged 
to target specific brain regions and cell types in future case-control genomic studies of brain 
disorders. 
 
Association strength between mice and human 
 
Most cell type-trait associations were attenuated using human single-nuclei data compared 
with mouse single-cell RNA-seq data, suggesting that the transcripts that are lost by single-
nuclei RNA-seq are important for a large number of disorders and/or that the controlled 
condition of mouse experiments provide more accurate gene expression quantifications.  
 
Supplementary discussion 
 
We replicated and extended our previous findings for schizophrenia 6. We found the most 
significant associations for neurons located in the cortex, hippocampus and striatum (Fig. 2A, 
3) in multiple independent datasets, and showed that these neuronal cell types can be 
prioritized among neurons (Extended Data 4, 8 and 10). These results are consistent with the 
strong schizophrenia heritability enrichment observed in open chromatin regions from: human 
dorsolateral prefrontal cortex 7; human cortical, striatal and hippocampal neurons 8; and mouse 
open chromatin regions from cortical excitatory and inhibitory neurons 9. This degree of 
replication in independent datasets from multiple groups strongly implicates these cell types in 
the etiology of schizophrenia.  
 
Two theories for the selective vulnerability of neuronal populations in Parkinson’s disease 
currently exist: the “spread Lewy pathology model” which assumes cell-to-cell contacts 
enabling spreading of prion-like α-synuclein aggregates 10; and the “threshold theory” 11,12 
which proposes that the vulnerable cell types degenerate due to molecular/functional biological 
similarities in a cell-autonomous fashion. While both theories are compatible and can co-exist, 
our findings support the existence of cell autonomous mechanisms contributing to selective 
vulnerability. We caution that we do not know if all cholinergic and monoaminergic neurons 
show degeneration or functional impairment. However, analysis of the cellular mechanisms 
driving the association of cholinergic and monoaminergic neurons with Parkinson’s disease 
revealed endosomal trafficking as a plausible common pathogenic mechanism 
(Supplementary Table 16). 
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