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Supplementary Figure 1: Tissue — trait associations for all traits. The mean strength of association
(-log10P) of MAGMA and LDSC is shown and the bar color indicates whether the tissue is
significantly associated with both methods, one method or none (significance threshold: 5% false
discovery rate).
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Supplementary Figure 2: GWAS signal to noise ratio (Acc) by category of GWAS trait. Boxplot of the Agc of
the different GWAS by category of trait. Aac was estimated using LDSC for each GWAS. The box represents
the median, upper and lower quartile, while the whiskers extend to the most extreme value up to 1.5 time the
interquartile range. Data beyond the whiskers are called “outlying” points and are plotted individually
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Supplementary Figure 3: Number of single cells forming the oligodendrocyte cluster. Number of
single cells per region of the mouse nervous system used to estimate the average gene expression
of oligodendrocytes.



‘Age at menarche (Perry et al 2014) ‘Age at menarche (Perry et al 2014)
Original Dentate gyrus granuie neurons

SR Grne ada e el
[

Qugedenaroafe B

R
%iﬁ: 1::

R

Subcommisurs organ

‘Choknergi and monoarminer

SRR Grne ada e el

Oty granaaH S

T

o sogg 0
pergern senac S5
R
el

Toer

TSy ey

i L] =
TR k : ] ! ; ;
soodenrocye hociraor S i H H H H
wel B F = r r r
v e 1 ) ) ¥ ¥ ¥
i ol

i r r r r r

. 3 ] 3 : .

= E iy E E E

S pER e el

Subcommissracrgan e

Choroid &7

Toenc

Ty

LRl s

Sty ora ) g ot

Otiactory grahe

wmmﬂi\i e
v g

vl

Subcommissracrgan e

‘Anorexia (PGC, 2018)
Original

EEELE §§§ 2
L I -|-|r||||||!-||||||....,,_ —

‘Age at menarche (Perry et al. 2014)
DI and mesencephalon excitatory neurons.

]

[
1

i
r

‘Anorexia (PGC, 2018)
Di- and mesencephalon inhibitory neurons

L
‘Anorexia (PGC, 2018)
Telencephalon projecting excitatory neurons

UL 'l"FI |||||T' M

‘Age at menarche (Perry et al. 2014)
Di- and mesencephalon Inhibitory neurons

F
!
1
"

‘Anorexia (PGC, 2018)
Telencephalon projecting Inhibitory neurons

1 ""FI "
|||||FI|||T"' " 'r||-r| " ..III.I S —

‘Age at menarche (Perry et al., 2014)
Spinal cord inhbitory nourons

Autism (Grove et a, 2017)
Original

Age at menarche (Perry et al, 2014)
Toloncephalon projecting excitatory neurons

Autism (Grove et . 2017)
Dentate gyrus granule neurons

e 1-||"| I||||1-l| P ]

B (Yengo et a, 2018) B (Yengo et a, 2018) Bl (Yengo et al, 2018) M (Yengo et a, 2018) B (Yengo et a, 2018)
Cholinergic and monoaminergic nourons. Di-and mesencephalon excitatory neurons. Di- and mesencephalon inhibiory neurons Telencephalon inhibitory nterneurons. Telencephalon projecting excitatory neurons

™ ‘llr'l

Educational atainment (Loe ot al., 2018)

Telencephalon projecting inhibitory neurons

Intoligence (Savage et a, 2018)
Original

"

Intoligence (Savage ot al, 2018)
DI and mesencophalon exciatory neurons

‘Amyotrophic lateral sclerosis (Nicolas et al. 2018)

Original

-IIIIITAI T rllr-lrl-rr R L

Educational attinment (Leo et aL., 2018)

Original

I|“|||“b "

Autism (Grove et al, 2017)
Spinal cord excitatory nourons.

Inteligence (Savage et al. 2018)
Di- and mesencephalon inhibitory neurons

‘Amyotrophic lateralsclerosis (Nicolas et al. 2018)
T

LT Ry i L

Autism (Grove et al, 2017)

Tolencephalon nhibitory interneurons

||ll||-|||||| T T

Educationl attainment (Les et al.

Dentate gyrus granuie neurons

l"'l'r M

Intelligence (Savage et al. 2018)
Telencephalon nhibitory interneurons

2018)

Signiicance

-
PO Weron
T - |~ o
L

Tocesngon'
b

%‘j“'x, . | . B E
S T et orgina s g Gy P orgina R s e T
e = E i \ i b
wmwmﬂiw"1u§ = = = L L. L.
L] | | i . - =
W i L i i ]
g e b ! L L £
i [ [ - [ .
POy =8 == - [ E_ E
Es = = = = = =
= = Y = = =
L= e B ] | — T =
on — — B — - e

S e Yk o

o, g B
SR
v g
vt st

oo——

SRR
St

Tocestgon'

- 508 mesenceeny

Gnosnerge and

SR
o g R
raimat i
e

VascularencofRlal A3

B
smmmwvw
PR 2
Wi senebry et
"I

Teencestlony
TR

i %&‘ﬁxm

Major depressive disorder (Wray et al, 2018)

Telencephalon inibitory intereurons

Parkinson's disease (this study) Parkinson's disease (this study)
Original Cholinergic and monoaminergic neurons.

M |||||-| E— l.I i;...;.illl..,.m;_ ?_-'T'll

e

Major depressive isorder (Wray et al, 2018)
Telencephalon projecting excitatory neurons

e 1lll-r ]

™

T

Parkinson's disoase (ths study)

Enteric neurons.

-
-

Parkinson's disease (this study)
Oligodendrocytes

- I.FII|||||'|||| Mo

Nouroticism (Nagel ot al. 2018) Nouroticism (Nagel et al. 2018) Nouroticism (Nagel et al. 2018)
Original Cholinergic and monoaminergic neurons. Di- and mesencephalon excitatory neurons

II'I'I|||"'"" N

i

Nouroticism (Nagel et al. 2018)

Di- and mesencephalon inhi

ey

‘Schizophrenia (Pardifas et a. 2018) ‘Schizophrenia (Pardifas et a. 2018)
Original Dentate gyrus granule neurons

Nouroicism (Nagel ot
Spinal cord inhibitory

IT i

Schizophrenia (Pardifas ot a, 2018)

Di- and mesencephalon inhibitory neurons

] "I'Il||"'"' LN

Nouroticism (Nagel ot a, 2018)
Telencephalon projecting excitatory neurons.

o "'“"Inllln

T

Schizophrenia (Pardifas ot a, 2018)

Telencephalon inhibitory interneurons

T

rrT

s i
v ]
‘Schizophrenia (Pardifias et al., 2018) ‘Schizophrenia (Pardifias et al., 2018) Stroke (Malik et al., 2018) Stroke (Malik et al., 2018) ° ° ° ® ° N ° ® ° N ° ® ° ° ° ®
st s H
Gl H
i
Perighera sansof) H
TR [ =
S i
iliae =
s —
& o
- -
s ] = L=
~log10(P)

Supplementary Figure 4: Conditional analysis results for brain related traits. Conditional analysis results using MAGMA are shown for up to
the 5 most associated cell types (if at least 5 cell types were significant at a 5% false discovery rate in the original analysis. The color indicates
if the cell type is significant at a 5% false discovery rate and the label indicates the cell type the association analysis is being conditioned on.
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Supplementary Figure 5: Association of Parkinson’s disease with oligodendrocytes in the different
datasets. The dotted line indicated the nominal significance threshold (P=0.05)
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Supplementary Figure 6: Single nuclei datasets are systematically depleted of dendritically enriched transcripts relative to single-cell datasets.
Each bar represents a comparison between two datasets (X versus Y), with the bootstrapped z-scores representing the extent to which
dendritically enriched transcripts have lower specificity for pyramidal neurons in dataset Y relative to that in dataset X. Larger z-scores indicate
greater depletion of dendritically enriched transcripts, and red bars indicate a statistically significant depletion (P < 0.05, by bootstrapping).
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Supplementary Figure 7: Gene expression correlation within cell type across species. Pearson correlation of gene
expression (logz(expression) +1) between mouse and human cell types with matching names (from Habib et al. 2017).
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Supplementary Figure 8: Quantile-quantile plot of Parkinson’s disease meta-analysis. Quantile-quantile plot of the
meta-analyzed pvalues for Parkinson’s disease. The y-axis is truncated for clarity. The grey zone around the red line
represents the 95% confidence interval for the null distribution.
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Supplementary Figure 9:: Manhattan plot of Parkinson’s disease meta-analysis. The black dotted line represents the genome-wide significance threshold (5x10-8).
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Supplementary Figure 10: Jaccard index for the top 10% most specific genes in each tissue in the GTEx dataset.
Jaccard index were calculated between the top 10% most specific genes in each tissue from the GTEx dataset.
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Supplementary Figure 11: Jaccard index for the top 10% most specific genes in each cell type in the mouse nervous system (Zeisel et al. 2018).
Jaccard index were calculated between the top 10% most specific genes in each cell type from the mouse nervous system (Zeisel et al. 2018).
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Supplementary Figure 12: Correlation between beta coefficient and significance level. Histograms of the spearman rank correlations
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Supplementary Figure 13: Number of MAGMA associations with P<0.05 using permuted gene-level genetic associations. Gene labels were
randomly permuted a thousand times for the schizophrenia MAGMA gene-level genetic associations (39 cell types * 1000 permuted
labels=39,000 associations with permuted gene labels). The number of permutations with P < 0.05 is shown in blue. The black horizontal bar
shows expected number of random associations with P < 0.05 (39,000*0.05=1950).
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Supplementary Figure 14: Correlation in schizophrenia cell type association strengths with different window sizes using MAGMA. Pearson correlations of the cell
type association strength (-log1oP) across different window sizes using MAGMA. The diagonal shows the distribution of the (-log1oP) for each window size.
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Supplementary Figure 15: Correlation in schizophrenia cell type association strengths with different window sizes and percentages of most
specific genes using LDSC. Pearson correlations of the cell type association strength (-logioP) across different window sizes and
percentages of most specific genes using LDSC. The diagonal shows the distribution of the (-logioP) for the cell type associations using
different parameters.
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rank correlation was used to test for similarity in association strength (-log1oP) between MAGMA and LDSC among 39 cell types from the nervous system.



-log10(P) (MAGMA Top Cell Type)

201

—_
o

—_
o

1.0

15

2.0
Lambda GC

25

Beta (MAGMA Top Cell Type)

0.4 1

o
w

o
o

0.1 1

15

2.0
Lambda GC

25

Beta (MAGMA Top Cell Type)

0.3 1

0.2 1

0.1

Type
Anthropometric
e Cognitive
® Neurologic
® Other

Psychiatric

10 15

~log10(P) (MAGMA Top Cell Type)
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Supplementary Figure 20: Replication of cell type — trait associations in 88 cell types from 9 different brain regions. The mean strength of association (-log10P) of MAGMA and LDSC is shown and
the bar color indicates whether the cell type is significantly associated with both methods, one method or none (significance threshold: 5% false discovery rate). SCZ (schizophrenia), EDU
(educational attainment), INT (intelligence), BMI (body mass index), BIP (bipolar disorder), NEU (neuroticism), PAR (Parkinson’s disease), MDD (Major depressive disorder), MEN (age at
menarche), ICV (intracranial volume), ASD (autism spectrum disorder), STR (stroke), AN (anorexia nervosa), MIG (migraine), ALS (amyotrophic lateral sclerosis), ADHD (attention deficit
hyperactivity disorder), ALZ (Alzheimer’s disease), HIP (hippocampal volume).



Supplementary Note:
Genetic correlations among complex traits

We estimated the genetic correlations (r;) between the 26 traits. We confirmed prior reports -2
that psychiatric disorders were strongly inter-correlated (e.g., high positive correlations for
schizophrenia, bipolar disorder, and MDD) and shared little overlap with neurological disorders
(Supplementary Fig. 19 and Supplementary Table 4). Parkinson’s disease was genetically
correlated with intracranial volume 3 (r;=0.29, s.e=0.05) and amyotrophic lateral sclerosis
(ALS, 1,=0.19, s.e=0.08), while ALS was negatively correlated with intelligence (r;=-0.24,
s.e=0.06) and hippocampal volume (r;=-0.24, s.e=0.12). These results indicate that there is
substantial genetic heterogeneity across traits, which is a necessary (but not sufficient)
condition for trait associations with different tissues or cell types.

Cell type-specific and trait-associated genes are enriched in specific biological
functions

Understanding which biological functions are dysregulated in different cell types is a key
component of the etiology of complex traits. To obtain insights into the biological functions
driving cell-type/trait associations, we evaluated GO term enrichment of genes that were
specifically expressed (top 20% in a given cell type) and highly associated with a trait (top 10%
MAGMA gene-level genetic association). Genes that were highly associated with
schizophrenia and specific to telencephalon projecting excitatory neurons were enriched for
GO terms related to neurogenesis, synapses, and voltage-gated channels (Supplementary
Table 16), suggesting that these functions may be fundamental to schizophrenia. Similarly,
genes highly associated with educational attainment, intelligence, bipolar disorder,
neuroticism, BMI, anorexia and MDD and highly specific to their most associated cell types
were enriched in terms related to neurogenesis, synaptic processes and voltage-gated
channels (Supplementary Table 16). In contrast, genes highly associated with stroke and
specific to vascular cells were enriched in terms related to vasculature development, while
genes highly associated with ALS and peripheral sensory neurofilament neurons were
enriched in terms related to lysosomes.

Genes highly associated with Parkinson’s disease and highly specific to cholinergic and
monoaminergic neurons were significantly enriched in terms related to endosomes and
synapses (Supplementary Table 16). Similarly, genes highly specific to oligodendrocytes and
Parkinson’s disease were enriched in endosomes. These results support the hypothesis that
the endosomal pathway plays an important role in the etiology of Parkinson’s disease 4.

Taken together, we show that cell type-trait associations are driven by genes belonging to
specific biological pathways, providing insight into the etiology of complex brain related traits.

Comparison with case/control differentially expressed genes at the cell type level

We compared our findings for Alzheimer's disease (Supplementary Table 2, Fig. 4B,
Supplementary Fig. 20) with a recent study that performed differential expression analysis at
the cell type level between 24 Alzheimer's cases and 24 controls 5 (prefrontal cortex,
Brodmann area 10). We tested whether the top 500, top 1000 and top 2000 most differentially
expressed genes (no pathology vs pathology) in six different cell types (excitatory neurons,
inhibitory neurons, oligodendrocytes, oligodendrocytes precursor cells, astrocyte and
microglia) were enriched in genetic associations with Alzheimer’'s disease using MAGMA.
Consistently with our results, we found that genes differentially expressed in microglia were



the most associated with Alzheimer’s disease genetics (Supplementary Table 17), indicating
that our approach appropriately highlight the relevant cell type at a fraction of the cost of a
case-control single cell RNA-seq study. As performing case-control single cell RNA-seq
studies in the entire nervous system is currently cost prohibitive, the consistency of our results
with the case-control study of Alzheimer’s disease suggests that our results could be leveraged
to target specific brain regions and cell types in future case-control genomic studies of brain
disorders.

Association strength between mice and human

Most cell type-trait associations were attenuated using human single-nuclei data compared
with mouse single-cell RNA-seq data, suggesting that the transcripts that are lost by single-
nuclei RNA-seq are important for a large number of disorders and/or that the controlled
condition of mouse experiments provide more accurate gene expression quantifications.

Supplementary discussion

We replicated and extended our previous findings for schizophrenia 6. We found the most
significant associations for neurons located in the cortex, hippocampus and striatum (Fig. 2A,
3) in multiple independent datasets, and showed that these neuronal cell types can be
prioritized among neurons (Extended Data 4, 8 and 10). These results are consistent with the
strong schizophrenia heritability enrichment observed in open chromatin regions from: human
dorsolateral prefrontal cortex 7; human cortical, striatal and hippocampal neurons &; and mouse
open chromatin regions from cortical excitatory and inhibitory neurons °. This degree of
replication in independent datasets from multiple groups strongly implicates these cell types in
the etiology of schizophrenia.

Two theories for the selective vulnerability of neuronal populations in Parkinson’s disease
currently exist: the “spread Lewy pathology model” which assumes cell-to-cell contacts
enabling spreading of prion-like a-synuclein aggregates '9; and the “threshold theory” .12
which proposes that the vulnerable cell types degenerate due to molecular/functional biological
similarities in a cell-autonomous fashion. While both theories are compatible and can co-exist,
our findings support the existence of cell autonomous mechanisms contributing to selective
vulnerability. We caution that we do not know if all cholinergic and monoaminergic neurons
show degeneration or functional impairment. However, analysis of the cellular mechanisms
driving the association of cholinergic and monoaminergic neurons with Parkinson’s disease
revealed endosomal trafficking as a plausible common pathogenic mechanism
(Supplementary Table 16).
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