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Cortical parvalbumin-expressing (Pvalb1) neurons provide robust inhibition to neighboring pyramidal neurons, crucial for
the proper functioning of cortical networks. This class of inhibitory neurons undergoes extensive synaptic formation and mat-
uration during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood.
While several transcription factors, such as Nkx2-1, Lhx6, and Sox6, are known to be necessary for the differentiation of pro-
genitors into Pvalb1 neurons, which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb1

neurons’ innervation and synaptic function remains largely unknown. Because Sox6 is continuously expressed in Pvalb1 neu-
rons until adulthood, we used conditional knock-out strategies to investigate its putative role in the postnatal maturation and
synaptic function of cortical Pvalb1 neurons in mice of both sexes. We found that early postnatal loss of Sox6 in Pvalb1 neu-
rons leads to failure of synaptic bouton growth, whereas later removal in mature Pvalb1 neurons in the adult causes shrink-
age of already established synaptic boutons. Paired recordings between Pvalb1 neurons and pyramidal neurons revealed
reduced release probability and increased failure rate of Pvalb1 neurons’ synaptic output. Furthermore, Pvalb1 neurons lack-
ing Sox6 display reduced expression of full-length tropomyosin-receptor kinase B (TrkB), a key modulator of GABAergic
transmission. Once re-expressed in neurons lacking Sox6, TrkB was sufficient to rescue the morphologic synaptic phenotype.
Finally, we showed that Sox6 mRNA levels were increased by motor training. Our data thus suggest a constitutive role for
Sox6 in the maintenance of synaptic output from Pvalb1 neurons into adulthood.
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Significance Statement

Cortical parvalbumin-expressing (Pvalb1) inhibitory neurons provide robust inhibition to neighboring pyramidal neurons, crucial
for the proper functioning of cortical networks. These inhibitory neurons undergo extensive synaptic formation and maturation
during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. However, it
remains largely unknown which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb1 neurons.
Here, we show that the transcription factor Sox6 cell-autonomously regulates the synaptic maintenance and output of Pvalb1 neu-
rons until adulthood, leaving unaffected other maturational features of this neuronal population.
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Introduction
Parvalbumin-expressing (Pvalb1) neurons comprise the largest
class of GABAergic interneurons in the cortex. Their birth obeys a
dorsal-ventral temporal distribution within the medial ganglionic
eminence (MGE; Wonders et al., 2008; Inan et al., 2012), followed
by a coordinated migration pattern and subsequent allocation to
the different cortical layers (Anderson et al., 1997, 2001; Bartolini
et al., 2013). In mice, during the second postnatal week Pvalb1

neurons undergo prominent transcriptional changes that mark
the beginning of their electrophysiological, molecular and synaptic
maturation (Micheva and Beaulieu, 1996; Chattopadhyaya et al.,
2004; Okaty et al., 2009; Goldberg et al., 2011). After approxi-
mately three postnatal weeks, neurons ultimately acquire their
hallmark characteristics, such as high-frequency action potentials
(APs), Pvalb expression itself, robust somatic innervation of neigh-
boring pyramidal neurons, as well as a specialized extracellular
matrix, known as perineuronal nets (PNNs; Hu et al., 2014).

Neuronal maturation involves reaching several developmen-
tal milestones while retaining plasticity to adapt to new stimuli
(Takesian and Hensch, 2013). For example, alterations in local
network activity can trigger transient changes in Pvalb1 neurons’
firing properties (Dehorter et al., 2015), PNNs (Nowicka et al.,
2009; Banerjee et al., 2017; Favuzzi et al., 2017), and the strength
of synaptic inhibition they provide, thereby rebalancing local lev-
els of excitation and inhibition (Moore et al., 2018). Activity-de-
pendent expression of brain-derived neurotrophic factor
(BDNF) is one of the strongest modulators of Pvalb1 neurons’
maturation and dynamic tuning, acting primarily via the activa-
tion of tropomyosin-receptor kinase B (TrkB) in these cells
(Hong et al., 2008; Lin et al., 2008; Bloodgood et al., 2013).
Nonetheless, the transcriptional programs underlying the post-
natal maturation and maintenance of Pvalb1 neurons, with few
exceptions (Dehorter et al., 2015), are largely unknown.

Loss of the transcriptional factor Sox6 embryonically in
GABAergic neurons, via Lhx6Cre-dependent removal, perturbs
layer allocation of MGE-derived neurons and the ectopically
located cells show delayed electrophysiological maturation, as
well as loss of mature markers, such as Pvalb (Batista-Brito et al.,
2009). Ultimately, this early loss of Sox6 leads to lethal epilepsy
at postnatal day (P)17–P19 (Batista-Brito et al., 2009), in a period
of significant increase of cortical Pvalb1 neuron axonal arboriza-
tion around pyramidal neurons during normal development
(Chattopadhyaya et al., 2004).

Because Pvalb1 neurons continually express Sox6 after
birth, we sought to investigate whether Sox6 plays a specific
role in regulating Pvalb1 neuron functional maturation post-
natally. Here, we show that postnatal loss of Sox6 in Pvalb1

neurons, while not affecting several other aspects of their
maturation, specifically disrupts synaptic bouton maturation
and maintenance by controlling the levels of TrkB expression
in this neuronal population.

Materials and Methods
Mouse lines
All mouse handlings in this study were according to local ethical regula-
tions and were approved by the local committees for ethical experiments
on laboratory animals [Stockholms Norra Djurförsöksetiska nämnd,
Sweden, and Comité Institutionnel des Bonnes Pratiques Animales en
Recherche (CIBPAR) of Centre Hospitalier Universitaire Ste-Justine
Research Center]. We used different Cre-expressing mouse lines to label
Pvalb1 cells and conditionally remove Sox6 at various time points. We
used the PvalbCre knock-in mice for wide-ranging targeting of Pvalb1

neurons after the second postnatal week (Hippenmeyer et al., 2005), and

the GAD76-GFP G42 line (which labels a subset of Pvalb1 neurons;
Chattopadhyaya et al., 2004) was used to target these cells in the adult
cortex. Animals were crossed with the reporter mouse line R26R CAG-
boosted eGFP (RCE; Miyoshi et al., 2010), together with Sox6 loxp back-
ground (Dumitriu et al., 2006; Sox6fl/1 or Sox6fl/fl). Experimental ani-
mals included mice of both sexes. We also used CD1 wild-type mice to
describe the endogenous expression of Sox6 throughout postnatal matu-
ration and after accelerating rotarod training (P28 and P90).

Immunohistochemistry
Animals were deeply anesthetized with ketamine/xylazine (4:1) and
transcardically perfused with PBS solution followed by ice-cold 4% para-
formaldehyde (PFA)/PBS solution. The brains were dissected and post-
fixed for 1 h in ice-cold 4% PFA/PBS solution. These were then rinsed in
PBS and cryo-protected in 4°C 30% sucrose/PBS solution overnight until
sinking. Brains were embedded in optimal cutting temperature (OCT,
Histolab Products AB) and frozen to �80°C until cryo-sectioned in a
Leica cryostat at 10- to 14-mm thickness.

Sections were washed in PBS-Tween (0.1% Tween20 in PBS) and
incubated in a blocking solution (2.5% normal goat serum, 2.5% donkey
serum, 2.5% BSA, 0.5 M NaCl, and 0.3% Tween 20 in PBS) for 1 h at
room temperature. They were then incubated in primary antibodies in
dilution buffer (2.5% BSA, 0.5 M NaCl, and 0.3% Tween 20 in PBS) over-
night at 4°C, washed in PBS four times for 15min each and 1 h of sec-
ondary antibody incubation at room temperature, followed by four
washes in PBS for 10min each. Nuclear counterstaining was performed
with 100 ng/ml of 4,6-diamidino-2-phenylindole (DAPI) solution in PBS
for 5min. Primary antibodies were used at the following concentrations:
chicken anti-green fluorescent protein (1:2000, Abcam), mouse anti-
Pvalb (1:1000; Sigma-Aldrich), guinea pig anti-Sox6 (1:2000; Stolt et al.,
2006), mouse anti-NeuN (1:200; Abcam), and biotinylated Wisteria
Floribunda Agglutinin (WFA) to label PNNs (VectorLabs). Secondary
antibodies conjugated with Alexa Fluor dyes 488 (1:1000), 555, and 647
(1:400; Invitrogen) or Streptavidin 555 (1:500, Invitrogen) were used to
visualize the signals. Sections were then mounted with Fluoromount-G
(Southernbiotech).

We used a Carl Zeiss LSM700 or LSM880 confocal microscope with
Plan-Apochromat 10� or 100� objectives to acquire images of the pri-
mary somatosensory cortex (S1), always spanning all six cortical layers.
Cells were then counted using the Cell Counter plugin on ImageJ/FIJI
software. For in vivo bouton analysis, we measured the diameter of axo-
nal boutons surrounding cell bodies using NeuN1 or DAPI to define the
cellular circumference.

In situ hybridization and analysis
Mice were deeply anesthetized with ketamine/xylazine (4:1) and brains
immediately removed and embedded in an OCT cryomount (Histolab
Products AB), frozen on dry ice, sectioned at 10mm using a cryostat
(Leica Biosystems; kept at �80°C). In situ hybridization was performed
following the manufacturer’s instructions for fresh-frozen tissue
(RNAscope technology, Advanced Cell Diagnostics) for the following
genes: Pvalb, Sox6, and a custom-made Ntrk2 (for full-length TrkB),
while DAPI was included to determine the different cortical layers.

Confocal images were acquired using Plan-Apochromat 20� or
40� objectives and images were analyzed with Imaris 8.2 (Oxford
Instruments). Pvalb-channel was used as a mask to define individual
cells (cell body selection) and the number of TrkB-FL or Sox6 puncta
in Pvalb1 neurons was analyzed using the vesicle detection feature. For
each mouse, between 50 and 150 Pvalb1 cell bodies were included in the
analysis.

Acute slice electrophysiology
Whole-cell patch-clamp electrophysiological recordings were obtained
from eGFP-expressing cells in acute brain slices prepared from P21 to
P32 PvalbCre:RCE animals. Animals were anesthetized deeply with keta-
mine/xylazine (4:1), decapitated, and the brain was quickly removed and
transferred to ice-cold cutting-solution of the following composition: 87
mM NaCl, 75 mM sucrose, 2.5 mM KCl, 25 mM NaHCO3, 1.25 mM

NaH2PO4, 7 mM MgCl2, 1 mM CaCl2, and 10 mM glucose. Animals older
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than P21 were transcardically perfused with cutting-solution. The brain
was then fixed to a stage and 300-mm slices were cut on a vibratome
(VT1200 S, Leica). Slices were then individually transferred into an incu-
bation chamber containing oxygenated artificial CSF (aCSF) of the fol-
lowing composition: 125 mM NaCl, 2.5 mM KCl, 25 mM NaHCO3, 1.25
mM NaH2PO4, 2 mM MgCl2, 2 mM CaCl2, and 10 mM glucose at 35°C for
30min followed by at least 30min at room temperature before record-
ings. During recording, slices were continually perfused with aCSF.
Patch electrodes were made from borosilicate glass (resistance 4–8 MV;
Hilgenberg, GmbH) and filled with a solution containing the following:
135 mM KCl, 10 mM Na-phosphocreatine, 10 mM HEPES, 4 mM Mg-
ATP, 0.3 mM Na-GTP, and 5mg/ml of neurobiotin (VectorLabs).

Paired recordings were performed in LII/III in S1 of PvalbCre/1:
RCEeGFP/1 control and Sox6-cKO animals. eGFP and pyramidal cells
were selected between 10–50mm of distance from each other. The presyn-
aptic cell in current-clamp received a stimulus eliciting eight APs at 10Hz,
while the postsynaptic cell was held at�70mV in voltage-clamp.

Analysis of intrinsic and synaptic properties
Depolarizing and hyperpolarizing current steps were used to extract the
following electrical properties of recorded neurons: resting membrane
potential (RMP) was measured after membrane rupture; input resistance
(iR) was obtained by the steady-state voltage response to a hyperpolariz-
ing current step injection; membrane time constant (tm) was extracted
by performing an exponential fit to the decay phase of a voltage response
to a negative current step; H-current-mediated sag was measured as the
voltage difference between the peak hyperpolarization and the steady-
state response to a long (1-s) current step. AP threshold was obtained
from the first AP discharge after the minimum current injection to elicit
an AP. The additional following parameters were measured from the
same protocol: AP amplitude; AP width at half amplitude; and after-hy-
perpolarization (AHP) latency (the time from spike threshold to lowest
point of the AHP) and amplitude (in mV).

Analysis of perisomatic innervation in organotypic slice
Slice culture preparation was performed using Sox6fl/fl mice pups of ei-
ther sex, the detailed methods for which have been described elsewhere
(Chattopadhyaya et al., 2004). Cortical slices were then placed on trans-
parent Millicell membrane inserts (Millipore), in six-well plates contain-
ing culture medium and incubated at 34°C with 5% CO2-enriched air
for the different developmental time frames. For biolistic transfection
with the gene gun (Bio-Rad), gold particles were coated with the specific
plasmids as specified in the text, originally generated by subcloning of a
10 kb region of Gad1 gene promoter by gap repair in front of the GFP
coding region in pEGFP (Clontech) and described in full detail in
Chattopadhyaya et al. (2004). This 10-kb Gad1 promoter region confers
basket cell specificity in transfected cortical slices allowing us to label
them (using PG67-GFP) and manipulate their function at the single-cell
level (using PG67-GFP/Cre). The TrkB plasmid (gift from Eero Castren)
was subcloned under the same 10kb-G67 vector to generate G67-
GFP1TrkB and G67-GFP1Cre1TrkB for the rescue experiments.

Slices were fixed, freeze-thawed and immunostained with NeuN
(mouse monoclonal catalog #MAB377, 1:400, Millipore), as described in
Chattopadhyaya et al. (2004). For each experimental group, equal num-
ber of basket cells localized in LII/III and L were analyzed. Confocal
image stacks of basket cell axon arbors were acquired using a 63� glyc-
erol objective (NA 1.4, Leica) with Leica TCS SP8 at 1-mm steps of at
least 50mm along the z-axis. At least three stacks were acquired for each
basket cell. Image stacks were traced using the Neurolucida confocal
module and analyzed using Neuroexplorer (Microbrightfield). Analysis
of basket cell perisomatic innervation and bouton size was performed as
described in detail in (Chattopadhyaya et al., 2004, 2013; Baho et al.,
2019) where only innervated cells were included in this analysis. Briefly,
the complexity of the basket cell Pvab1 axon branches around a pyrami-
dal cell soma was reported as the average number of intersections and
bouton density. The number of intersections represented the intersec-
tions between a basket cell axon and the Sholl spheres (9mm, increment
of 1mm) from the center of the pyramidal cell soma. Bouton density
around each basket cell represented the total number of GFP1 boutons

in a radius of 9mm from the center of the pyramidal cell soma; 12–24 py-
ramidal cells were analyzed for each basket neuron. Bouton size was
measured by the diameter of a bouton perpendicular to the basket axon
around pyramidal cell soma using Leica confocal software. For each con-
focal stack, we chose at least four complete neuronal somata (identified
by NeuN immunolabeling) and measured bouton size of all GFP1 peri-
somatic boutons. We then calculated the mean of all bouton analyzed
for each basket cell.

Virus injections and cell counting
G42:Sox6fl/1 or G42:Sox6fl/fl mice (three to four months old) were
firstly anesthetized in an enclosed chamber in the presence of iso-
flurane. Subsequently, animals were fixed on a stereotaxic frame
connected to a breathing system providing constant flow of oxygen
and isoflurane, which kept the animals deeply anesthesized.
Animals were constantly and thoroughly monitored for any signs
of pain. Lidocaine was locally applied, before hole was drilled. We
injected 1.25–1.5 ml of a cocktail of AAV Cre-Recombinase
Dependent on GFP34 (CRE-DOGOPT), together with AAV2/8 Flex-
myr-GFP virus (Neurophotonics Platform) in the somatosensory
cortex (S1). With this strategy we were able to express Cre only in
eGFP-expressing cells and remove Sox6 in Sox6fl/fl animals. Viral
expression was allowed for three weeks for subsequent axonal bou-
ton analysis. Brain collection and following analysis were accord-
ing to the description for immunohistochemistry (for eGFP,
NeuN, and Sox6). Confocal images were collected using 63� oil-
objective. Images were analyzed using Imaris, with which we were
able to measure the diameter of axonal boutons surrounding
NeuN1 cell bodies.

Rotarod training
Adult male mice were positioned on a rotarod apparatus, which rotated
in accelerating speed from 4Hz up to 60Hz within the duration of each
session, which had a maximum duration of 360 s). Latency to fall was
annotated for each session and animals were put back in their cage for
2–3 min before the start of the next session. Each experimental animal
underwent a total of 10 sessions while control animals were littermates
and shared home cage with trained animals. Brains were collected 4 h af-
ter the last session and processed for in situ hybridization as
aforementioned.

Statistics
Statistical tests used and p values for each experiment are included
in figure legends. Differences were considered statistically signifi-
cant for p, 0.05. In summary, differences between two experimen-
tal groups were assessed using two-tailed unpaired Student’s t test
for normally distributed data and Mann–Whitney test for not nor-
mally distributed data or Kolmogorov–Smirnov test to compare
cumulative distributions. Differences between three or more ex-
perimental groups were assessed with one-way ANOVA with
Tukey’s post hoc comparison. Two-way ANOVA (repeated meas-
ures) was used when two factors (condition and time) were
included in the experiment. All bar graphs represent mean 6 SEM.
All the statistical analyses were performed using Prism 9.0
(GraphPad Software).

Results
Postnatal loss of Sox6 does not affect expression of Pvalb and
formation of PNNs on Pvalb1 neurons
Sox6 expression in Pvalb1 neurons is maintained from embry-
onic stages (Batista-Brito et al., 2009) through postnatal develop-
ment into adulthood (Pvalb1Sox61/Pvalb1 at P28 94.96 3.2%;
at P90 73.96 3.67%; Fig. 1A,B). To investigate what role Sox6
plays specifically during postnatal maturation of Pvalb1 neurons,
without affecting its embryonic expression, we used PvalbCre:
RCE:Sox6fl/6 mice to remove Sox6 starting at P7-P10 while label-
ing them with eGFP (Hippenmeyer et al., 2005; Zheng et al.,
2011). By P28 the majority of Pvalb1 neurons of the S1 express
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eGFP (85–95%; data not shown), with efficient Sox6 ablation in
Pvalb1 cells in PvalbCre:RCE:Sox6fl/– (Sox6-cKO) mice (unpaired
t test, p, 0.0001; Fig. 1C,D). We observed no differences in
Pvalb1 cell density (unpaired t test, p= 0.89; Fig. 1E,F) nor
Pvalb1PNN1 co-labeling among eGFP1 neurons (unpaired t
test for p=0.37; Fig. 1G), as well as no differences in the levels of
Pvalb1 and PNN staining intensity across cortical layers at P28
(Fig. 1H,I). Whole-cell patch-clamp recordings of eGFP1 cells in
S1 slices of P21–P32 PvalbCre animals revealed that Sox6-cKO

neurons still displayed typical fast-spiking and high-frequency
firing properties (Fig. 1J), although with slightly altered electro-
physiological features (unpaired t tests, higher input resistance:
p= 0.022), faster membrane constant (p= 0.002), higher fre-
quency adaptation (p=0.003). Conversely, pyramidal neurons’
firing properties were not altered, except for higher Ih-mediated
sag (unpaired t test, p= 0.019; Fig. 1K), a possible compensatory
mechanism to limit excitability (Fan et al., 2005; van Welie et al.,
2004).
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Figure 1. Cortical Pvalb1 neurons do not require postnatal expression of Sox6 to achieve their hallmark maturational signature. A, Immunofluorescence of S1 cortical sections (P28 and P90
wild-type mice) showing co-expression of Pvalb and Sox6. B, Bar plots show percentage of co-expressing Pvalb1 Sox61 cells. C, Immunofluorescence of S1 cortical sections (P28). D, Bar plot
shows efficient Sox6 removal using PvalbCre:RCE: Sox6fl/6 (n= 3 mice per condition; unpaired t test, p, 0.0001). E, Immunofluorescence of S1 cortical sections (P28) showing eGFP, Pvalb and
WFA, which binds to PNNs. F, Bar plots showing percentage of eGFP1 cells expressing Pvalb. G, Percentage of eGFP1Pvalb1 cells enwrapped by PNN/WFA (n= 3 mice per condition; unpaired
t test, p= 0.89). H, I, Bar plots display intensity of Pvalb and (I) PNN overlapping the eGFP channel throughout cortical layers (n= 3 mice per condition; unpaired t test, p= 0.37). J,
Representative current-clamp traces of eGFP1 neurons recorded in PvalbCre:RCE: Sox6fl/6 mice (P21–P32 mice). Frequency of APs after current steps increments of 100 pA [control n= 9 cells
from 7 mice; Sox6-cKO n= 16 from 9 mice; unpaired t test, RMP p= 0.37; iR p= 0.02; Sag p= 0.54; Tau p= 0.002; AP half-width p= 0.16; adaptation p= 0.002; frequency APs, two-way
ANOVA, repeated measures, row factor (current) p, 0.0001; and column factor (genotype), p= 0.51]. K, Representative current-clamp traces of pyramidal neurons recorded in PvalbCre:RCE:
Sox6fl/6 mice (P21–P32 mice). Frequency of APs after current steps increments of 40 pA [control n= 12 cells from 9 mice; Sox-cKO n= 11 from 10 mice; unpaired t test, RMP p= 0.17; iR
p= 0.54; Sag p= 0.019; Tau p= 0.86; frequency APs, two-way ANOVA, repeated measures, row factor (current) p, 0.0001; and column factor (genotype), p= 0.73]. iR, input resistance;
RMP, resting membrane potential: *p, 0.05, **p, 0.01, ***p, 0.001. Error bars, SEM. Scale bar: 20mm.
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Figure 2. Postnatal loss of Sox6 in Pvalb1 basket-cells reduces axonal bouton size and impairs synaptic output. A, Scheme of organotypic slice preparation for analysis of basket cell perisomatic innerva-
tion. B, Representative immunofluorescence of EP26–EP34 organotypic slices from Sox6fl/fl mice. Single basket cells were transfected with either only GAD67-GFP plasmid or the same plasmid together with
Cre. C, Mean bouton size (unpaired t test with Welch’s correction, p=0.0234), bouton density (unpaired t test with Welch’s correction, p=0.9196) and terminal branching (unpaired t test with Welch’s correc-
tion at all data points p. 0.1) around pyramidal somata for individual Pvalb1 cells from EP10–EP18 (n=5 PG67-GFP basket cells vs n=7 PG67-GFP1Cre basket cells). D, Mean bouton size (unpaired t test
with Welch’s correction, p=0.0487), bouton density (unpaired t test with Welch’s correction, p=0.0934), and terminal branching (unpaired t test with Welch’s correction at all data points p. 0.1) for indi-
vidual Pvalb1 cells around pyramidal somata from EP26 to EP34 (n=8 GFP Ctrl vs n=9 GFP1Cre basket neurons for bouton density and terminal branching; n=4 GFP Ctrl vs n=5 GFP1Cre basket neu-
rons for bouton size analysis). E, Representative immunofluorescence for eGFP and NeuN in PvalbCre, RCE, Sox6fl/6 at P28, and bar blot shows eGFP1 bouton size around pyramidal neurons (n=3 mice per
genotype; bouton size value is the average of all boutons surrounding 15–30 cells per animal; unpaired t test, p=0.033; boutons per soma, p=0.78). F, Whole-cell patch-clamp recordings of cortical Pvalb1

neurons and pyramidal neurons from S1 acute slices from control and Sox6-cKO mice. Paired recordings of Pvalb1 neuron evoked postsynaptic currents in neighboring pyramidal neuron. Presynaptic Pvalb1

neuron (in current-clamp) and postsynaptic evoked currents in pyramidal neuron (voltage-clamp recording with high-chloride intracellular solution). G, Percentage of failure rate of Pvalb1 neurons’ output after
one AP (n=3 cells from n = 3 mice per condition; unpaired t test, p=0.007). H, Percentage of average failure rate during five APs at 10 Hz (right; unpaired t test, p=0.042). I, Summary of PPR (IPSC2/
IPSC1) for the first pair of APs (n=3 mice per condition; unpaired t test, p=0.008). J, PPR during spike trains of five APs [two-way ANOVA, repeated measures, row factor (genotype) p=0.025; and column
factor (IPSCN) = p, 0.001]. EP, equivalent postnatal day; PPR, paired-pulse ratio; Py, pyramidal neuron; Vh, voltage holding; *p, 0.05, **p, 0.01. Error bars, SEM. Scale bar: 5mm.
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Cortical Pvalb1 neurons require Sox6 for axonal maturation
and synaptic function
Formation of cortical GABAergic synapses accelerates at the end
of postnatal week one and, in particular, axonal trees expand dur-
ing the entire first postnatal month (Micheva and Beaulieu, 1996;
Chattopadhyaya et al., 2004; Pangratz-Fuehrer and Hestrin, 2011).
To investigate whether Sox6 activity during postnatal development
plays a role in the process of synapse formation and maturation,
we used a gene gun transfection approach in cortical organotypic
cultures, using a previously characterized plasmid which specifi-
cally targets Pvalb1 cells (PG67; Chattopadhyaya et al., 2004, 2007,
2013; Baho et al., 2019; Di Cristo et al., 2007). This technique
allows (1) visualization of Pvalb1 basket cells’ axonal branching
and synaptic innervation onto excitatory neurons during develop-
ment at high resolution and (2) manipulation of gene expression
in isolated Pvalb1 neurons in an otherwise wild-type background,
allowing for single-cell perturbation and cell-autonomous studies
(Baho et al., 2019; Amegandjin et al., 2021).

Briefly, organotypic cultures were prepared from P3 to P5
Sox6fl/fl mice. Subsequently, we transfected cells with PG67 plas-
mid alone to drive the expression of GFP (Control Pvalb1 neu-
rons) or PG67 together with Cre (Sox6-cKO Pvalb1 neurons).
Using this approach, we could conditionally knock-out Sox6 in
single Pvalb1 basket cells at different developmental windows, in
an otherwise wild-type background (Fig. 2). Transfections were
performed either between equivalent P (EP)10 (P5 plus 5 d in
vitro) and analyzed at EP18 or from EP26 to P34 (Fig. 2A,B).

We have previously shown that the large majority of GFP-la-
beled boutons in these experimental conditions represent pre-
synaptic terminals (Chattopadhyaya et al., 2004; Wu et al., 2012).

Sox6 removal from EP10 to EP18, a phase of active axonal
growth (Chattopadhyaya et al., 2004), did not disrupt overall
bouton density and axon branching around pyramidal cell
somata but led to a reduction in the size of individual boutons
(Fig. 2C). Removing Sox6 at EP26, a time point when the axonal
structure of basket cells in vitro is mature and much more stable
(Chattopadhyaya et al., 2004; Baho and Di Cristo, 2012; Baho et
al., 2019), also led to decreased bouton size (Fig. 2D). In addition,
while wild-type EP34 Pvalb1 basket cells had significantly larger
bouton size than EP18 Pvalb1 basket cells (one-way ANOVA
followed by post hoc Tukey’s multiple comparison, p=0.0011),
the same comparison between mutant cells showed no signifi-
cant difference (p=0.0629). Similarly, we found no significant
differences in bouton size between EP18 wild-type Pvalb1 and
EP34 Sox6-cKO Pvalb1 basket cells (p=0.9222). Altogether
these data suggest that postnatal loss of Sox6 in individual
Pvalb1 basket cells impaired synaptic bouton growth.

To investigate whether the observed effects were recapitulated
in vivo, we analyzed GFP1 boutons in S1 of P28 PvalbCre:RCE:
Sox6fl/6 mice. This analysis revealed a similar reduction in bou-
ton size in Sox6-cKO mice compared with littermate controls
(unpaired t test, p= 0.033; Fig. 2E) and no significant effect in
number of bouton per soma (unpaired t test, p= 0.78; Fig. 2E).
Importantly, to investigate whether the structural phenotype had
a functional correlate, we performed paired recordings of LII/III
Pvalb1 cell and neighboring pyramidal neurons in P16–P28 S1
acute slices of PvalbCre:RCE:Sox6fl/6 mice (Fig. 2F). As previ-
ously shown (Goldberg et al., 2011), we confirmed the high
release probability and low failure rates of Pvalb1 synapses in
controls (Fig. 2G). Conversely, in paired recordings from Sox6-
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cKO mice we observed increased failure rate of evoked IPSCs
(Fig. 2G, unpaired t test, p=0.007, H, p= 0.042) and higher
paired-pulse ratio [Fig. 2I, unpaired t test, p=0.027, J, two-way
ANOVA, repeated measures, row factor (genotype) p=0.025;

and column factor (IPSCN) = p, 0.001], suggestive of a presyn-
aptic effect and indicative of lower release probability. Overall,
these data suggest that Sox6 regulates synaptic output in post-
natal Pvalb1 neurons.
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In vivo adult Sox6 removal affects pvalb1 neuron axonal
bouton size
Next, we wanted to investigate whether Sox6 regulates synaptic
stability in Pvalb1 neurons after adolescence, since around 75%
of Pvalb1 neurons in S1 still express Sox6 at P90 (Fig. 1A,B). In
order to remove Sox6 in the adult mouse cortex, we used a com-
bination of three viral vectors: two adeno-associated viruses
(AAVs) carrying Cre-recombinase dependent on GFP (Cre-
DOG; in which Cre is assembled depending on the presence of
GFP) and an AAV carrying Flex myr-GFP (Cre-dependent
expression of myristoylation-GFP, targeting GFP to the mem-
brane). These viruses were unilaterally injected into three- to four-
month-old Sox6fl/fl,1 mice crossed onto G42 (G42:Sox6fl/fl,1)
which is a GAD67-eGFP transgenic mouse line labeling a subset
of Pvalb1 neurons (Chattopadhyaya et al., 2004; Fig. 3A). The
effect of the viruses was restricted to cells expressing eGFP and fol-
lows a two-step process: first to excise Sox6 (Cre-DOG) but also to
drastically enhance the eGFP signal allowing for visualization of
synaptic boutons (myr-GFP). Twenty-one days after transfection,
we confirmed with immunohistochemistry that eGFP1 cells
within the injection site did not express Sox6 in the G42:Sox6fl/fl

mice (Fig. 3B), leaving Sox6 expression unaffected in non-trans-
fected neurons and in neurons from controls (G42:Sox6fl/1). We
then quantified the size of eGFP1 boutons surrounding NeuN1

cell somata, revealing a significant reduction in bouton size after
Sox6 loss (unpaired t test, p=0.048; Fig. 3C,D), suggesting that
Sox6 plays an active, cell-autonomous role in regulating synaptic
bouton size also in adult cortex.

Sox6 modulates Pvalb1 basket cell innervation by regulating
TrkB expression
One of the strongest known modulators of GABAergic synapses’
development, maturation and adult regulation is the neurotro-
phin BDNF, which acts by binding TrkB. In particular, TrkB
ablation in Pvalb1 neurons in the neocortex and hippocampus
leads to synaptic deficits (Ohba et al., 2005; Zheng et al., 2011;
Xenos et al., 2018) and to fewer GABAergic boutons when
removed in GABAergic neurons in the cerebellum (Rico et al.,
2002). Scaling of GABAergic synapse strength is also regulated
by BDNF (Swanwick et al., 2006; Hong et al., 2008), with loss of
activity-dependent BDNF release causing impaired Pvalb1 cell
maturation and function (Jiao et al., 2011). Furthermore, adult
loss of TrkB in cortical Pvalb1 neurons leads to decreased inhibi-
tion onto pyramidal neurons and abnormal cortical network ac-
tivity (Tan et al., 2018; Guyon et al., 2021).

We therefore hypothesized that TrkB acts downstream of
Sox6 and mediates synaptic maintenance in Pvalb1 neurons.
Consistent with our hypothesis, in situ hybridization for Pvalb
and full-length TrkB (gene Ntrk2) in P28 PvalbCre: Sox6fl/fl com-
pared with Cre-negative littermates (Sox6fl/fl) revealed that loss
of Sox6 decreases expression of TrkB-FL in Pvalb1 neurons, as
shown by the reduced number of TrkB-FL puncta in Pvalb1
cells (unpaired t test: # TrkB-FL puncta in Pvalb1 cells: LII/III,
p=0.0412; LIV, p= 0.014; LV/VI, p= 0.46; all layers, p=0.023;
Fig. 4A,B). In accordance with unaffected Pvalb protein expres-
sion (Fig. 1F,H), Sox6 ablation did not affect Pvalb mRNA levels
(unpaired t test: mean intensity Pvalb: LII/III, p=0.92; LIV,
p=0.30; LV/VI, p=0.63; all layers, p= 0.38).

In order to investigate whether TrkB mediates Sox6’s
action on refinement of Pvalb1 neurons’ synaptic connec-
tivity, we prepared organotypic slices from Sox6fl/fl mice
and transfected them from EP10 to EP24 using four differ-
ent experimental conditions (plasmid combinations): wild-

type Pvalb1 basket cells (transfected with only GFP), Sox6
deficient Pvalb1 basket cells (transfected with GFP 1 Cre),
Sox6 deficient Pvalb1 basket cells re-expressing TrkB
(transfected with GFP 1 Cre 1 TrkB cDNA) and wild-type
Pvalb1 basket cell over-expressing TrkB (transfected with
GFP 1 TrkB cDNA (Fig. 4C–E).

Notably, re-expression of TrkB in Pvalb1 basket cells
lacking Sox6 significantly rescued perisomatic bouton size
(GFP 1 Cre 1 Trkb: 0.696 0.06 mm one-way ANOVA post
hoc Tukey’s multiple comparisons, compared with GFP 1
Cre adjusted p = 0.0162; compared with GFP adjusted
p = 0.0987; Fig. 4E). Interestingly, in contrast to the short-
term effect of Sox6 loss which only affects bouton size
(EP10–EP18; Fig. 2C), long-term loss of Sox6 also affects
overall bouton density and axonal branching around py-
ramidal cell somata (EP10–EP24; Fig. 4E), possibly because
of pruning of small non-functional synaptic boutons over
time. Re-expression of TrkB in Pvalb1 basket cells lacking Sox6
also rescued perisomatic bouton density [GFP 1 Cre 1
Trkb: 9.66 0.5 boutons/soma one-way ANOVA post hoc
Tukey’s multiple comparisons, compared with GFP 1 Cre
(5.926 0.5 boutons/soma) adjusted p = 0.01; compared with
GFP (10.516 0.67 boutons/soma) adjusted p = 0.84; Fig. 4E].
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Altogether, these data strongly suggest a Sox6-mediated cell-au-
tonomous regulatory role on TrkB expression, which in turn
mediates fine-tuning of Pvalb1 cell innervation during post-
natal development.

Sox6 expression is upregulated in primary motor cortex
(M1) Pvalb1 neurons following increased locomotor activity
Interestingly, the Sox6 gene contains a synaptic activity-respon-
sive element (SARE), a regulatory enhancer element originally
discovered in the immediate early gene Arc (Kawashima et al.,
2009) that predicts transcriptional changes in response to neuro-
nal activation (Rodriguez-Tornos et al., 2013; Pulimood et al.,
2017). Therefore, to test the hypothesis that Sox6 expression in
cortical Pvalb1 cells can be modulated by increased network ac-
tivity, we moved to the M1, a cortical region engaged during
motor learning (Kleim et al., 1996, 1998; Beloozerova et al., 2003;
Costa et al., 2004; Hosp et al., 2013; Cao et al., 2015; Andreska et
al., 2020). We used the accelerating rotarod task as a means of
enforcing locomotor activity and thus triggering increased neu-
ronal firing in M1 (Costa et al., 2004), which augments expres-
sion of activity-regulated genes in both pyramidal neurons (Cao
et al., 2015; Hirata et al., 2016) and in Pvalb1 cells (Arango-
Lievano et al., 2019). In this task, mice were placed on a rotating
rod under continuous acceleration for 10 consecutive trials
(6min each). Latency to fall was tracked to evaluate improve-
ment in balance and motor coordination (Fig. 5A,B).

Activity-driven changes in gene expression vary across differ-
ent neuronal subtypes (Mardinly et al., 2016) and different pat-
terns and durations of stimuli can induce temporally distinct
genetic programs (Tyssowski et al., 2018). To account for that,
we collected the brains from trained and home-cage littermate
controls 4 h after the last rotarod session, a time point in which
both rapid and delayed waves of activity-modulated gene expres-
sion remain elevated (Tyssowski et al., 2018). In situ hybridiza-
tion for Pvalb and Sox6 in M1 revealed that Pvalb1 neurons
from trained mice expressed a higher number of Sox6 puncta
than controls (Fig. 5C,D, Kolmogorov–Smirnov test; p=0.0078,
E, unpaired t test, p=0.021), thus suggesting that Sox6 expres-
sion in cortical Pvalb1 can indeed be modulated by activity.

Discussion
Here, we showed that Sox6 is an activity-modulated transcrip-
tion factor constitutively expressed in cortical Pvalb1 neurons
and identified it as a key-player in shaping cortical inhibitory
synaptic output via control of TrkB expression, from postnatal
development and into adulthood.

From the second postnatal week, Pvalb1 neurons go through
a gradual shift in their molecular and electrophysiological matu-
ration (Okaty et al., 2009; Goldberg et al., 2011). In parallel, their
axonal arbor increases in complexity and contacts a progressively
larger number of postsynaptic targets with large boutons clus-
tered around the somata and proximal dendrites of the postsy-
naptic neurons (Chattopadhyaya et al., 2004; Favuzzi et al.,
2017). This maturational process plateaus only by the end of the
fourth postnatal week (Chattopadhyaya et al., 2004). While em-
bryonic expression of Sox6 is essential for layer allocation and
maturation of intrinsic electrophysiological properties of Pvalb1

neurons (Batista-Brito et al., 2009), here we show that postnatally
the role of Sox6 shifts toward regulating synapse maturation and
maintenance, suggesting that Sox6 plays distinct yet essential
roles in different developmental processes of Pvalb1 neurons.
Furthermore, our data suggest that, while postnatal expression of

Sox6 is dispensable for certain features of Pvalb1 neurons’matu-
ration, it is required for synaptic maturation and synaptic stabil-
ity, therefore indicating that distinct maturational and cellular
processes can be independently controlled by different molecular
programs. Accordingly, Sox6 is a transcription factor that does
not regulate gene expression by direct biding to DNA regulatory
sequences (Connor et al., 1994). Instead Sox6 acts together with
cell-type specific partner proteins, which consequently delineate
the specificity of genes to be regulated in distinct cell types and
timepoints (Kamachi et al., 2000; Stolt et al., 2006; Hagiwara,
2011). To our knowledge, it remains unknown which specific
partners Sox6 recruits in Pvalb1 neurons, but other transcrip-
tions factors have been shown to partner with Sox6, such as Sox5
and CtBP2, in non-neural tissue (Lefebvre et al., 1998; Murakami
et al., 2001; Hagiwara, 2011).

Our findings that Sox6 levels in Pvalb1 neurons is modulated
by increased locomotor activity suggests that it could be an im-
portant element in sensing changes in activity and shaping corti-
cal inhibitory synaptic output via control of TrkB expression. In
cortical pyramidal neurons, TrkB expression is regulated through
activity-dependent activation of the Ntrk2 P2 promoter by cal-
cium responsive elements down-stream of calcium influx and
CREB activation (Kingsbury et al., 2003; Deogracias et al., 2004).
While less is known about which factors control TrkB expression
in Pvalb1, BDNF-TrkB signaling regulates GABA synthesis in
cortical interneurons in a CREB-dependent manner (Sánchez-
Huertas and Rico, 2011), suggesting a regulatory pathway also
based on activity levels. Accordingly, BDNF-TrkB signaling is
closely linked to the fine-tuning and facilitation of inhibitory
drive to excitatory neurons (Colino-Oliveira et al., 2016; Gu et
al., 2018; Porcher et al., 2018). For example, activity-dependent
expression of Npas4 in pyramidal cells increases BDNF release,
which acts on presynaptic TrkB receptors on Pvalb1 neurons to
recruit inhibition (Bloodgood et al., 2013; Spiegel et al., 2014).
Similar to the activity-dependent mechanisms regulating BDNF
release, TrkB activation and expression in excitatory neurons
(Dragunow et al., 1993, 1997), our findings that Sox6 regulates
TrkB expression suggest it to be an important presynaptic regu-
lator in Pvalb1 neurons.

In particular, Pvalb1 neurons fine-tune the strength of so-
matic inhibition they provide and are especially prone to short-
term potentiation, based on the activity of the individual pyrami-
dal cells (Lourenço et al., 2014; Xue et al., 2014). Furthermore,
TrkB expression in Pvalb1 neurons is necessary for inducing
antidepressant effects in adult mice (Lesnikova et al., 2021) while
motor learning induces transient increase in Pvalb1 synaptic
bouton density across days (Chen et al., 2015). Therefore, it is
possible that Sox6’s role in regulating TrkB mRNA expression
covers a timescale that requires transcription and that it is per-
haps less responsive to short-term changes in excitability, but on
the contrary confers potentially more long-lasting effects
(Dragunow et al., 1993, 1997; Lin et al., 2018).
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